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Abstract

The work defended in this thesis introduces a novel appraacbnstraint-centred qual-
itative reasoning in a non-constructive manner. Non-cootve approaches have many
advantages including the fact that they do not require nsoiebe causally ordered and
can therefore reason with systems which contain algeboaips. This new approach
combines reasoning on the spectrum from fully qualitatovéutly quantitative. In ad-
dition to this, all underlying algorithms have been implenegl in parallel to decrease
execution times.

Previous work into parallel qualitative reasoning showrat execution time decreased
over sequential implementations however the work had twio isadvantages. First, not
all stages of execution were implemented in parallel tlreesthe design was not optimal
and secondly, the implementation was presented in the fdrendedicated hardware
architecture.

Several methods exist to reason with intervals or fuzzy remnhthowever no non-
constructive approach offers results which are sound antplmie. A new qualitative
reasoner, named JMorven, was implemented completely faatch to overcome the
limitations described above. JMorven is the successor tovdfobut presents a novel set
of algorithms working non-constructively and has an alestparallel architecture which
allows it to execute faster when run in distributed compymvironments. The novel

work presented and tested in this thesis consists of:
1. Anovel portable parallel architecture allowing spe@dbtievery stage of execution.

2. The use of auxiliary variables in a non-constructive envinent.
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. More accurate simulation usimgth order Taylor Series.
. Incorporating several non-constructive fuzzy intesratulation techniques.

. A method of simulating fuzzy intervals non-construdywehich is asymptotically

sound and complete.

. Offering the ability to carry out numerical simulationsmconstructively from a

gualitative model description.

. A single non-constructive simulation engine which isatap of reasoning on the

spectrum from fully qualitative to fully quantitative.
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Chapter 1

Introduction

The work completed for this thesis involves developing radthfor non-constructive
simulation in a parallel manner for a novel qualitative measg inference engine and

implementing the ideas in a system completely written franateh.

Non-constructive simulation approaches can be thoughs geaerate-and-test methods
which involves determining all possible combinations di@éaours and discarding those
that are inconsistent. This differs from constructive aaghes which require a strict
model structure as they construct successor values faerayariables and use these to
update all remaining variables. Non-constructive techegpffer several advantages over
constructive methods. They are more general as they do maisiena strict structure on
the input models; models do not need to be causally orderezhvalows algebraic loops
within models to be reasoned with. Chapter 2.4 discussetiffeeences between the two

approaches in detail.

Parallel computing techniques allow execution times to éaehsed dramatically when

multiple processing units are available. This is benefi@ajualitative reasoning since
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many implementations run slowly due to the large number sijibe behaviours pro-
duced. Implementing core algorithms in parallel allowsubke of multiple processors to
carry out the calculations in parallel thus speeding up ttez@tion time of qualitative

simulation. Chapter 3 discusses the advantages of pacalheputing and methods to

determine how efficient parallel algorithms are.

1.1 Motivation

The background context of the project was the developmemdetrbased planner that
could be used in harmful environments based on GraphPlanm(Bihd Furst, 1997). It

became apparent early on that there was not a suitable ireptation of a qualitative

reasoner that could be used for the purpose therefore a dpaalitative reasoner was to
be developed. After a short time, interests shifted towaedting a more useful quali-
tative reasoning implementation; therefore some reseaashundertaken into previous
efforts to speed up execution times and to obtain more mrestigulations than existing

techniques.

There was an attempt by another group to implement an egistiralitative reasoner,
QSIM (Kuipers, 1986), using parallel algorithms to imprgerformance. This was suc-
cessful although there were a few drawbacks with their aesngl these provided the mo-
tivation to create a novel qualitative reasoning systenciviwould overcome these dis-
advantages. The desire was to implement a new abstracteattine which was portable
allowing it to be executed on a wide variety of computer syst@and to incorporate par-

allelisations in every stage possible.

The desire to operate non-constructively relaxes the caingt on the models used in a
system in that they may contain algebraic loops and do notir@@ny specific ordering

of the equations used to describe the model. No existingtgtia¢ reasoning approach
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provides a reasonable and accurate output without inajusiourious behaviours. The
development of a non-constructive semi-quantitative ftmn engine commenced that
would allow reasoning on the spectrum from fully qualitatite fully quantitative. This
presents a very useful tool in the development of many systdlowing simulations to
be carried out using pure qualitative parameters, fuzzgrwals or precise quantitative
information depending on the known precision of the systedpsimulated. Bridging
the gap between qualitative and numerical simulation lke provides a suitable tool for

many different applications, hopefully extending the tsase of qualitative reasoning.

These new approaches have been implemented in a singlewoaknealled JMorven.
The name follows from its immediate predecessor, Morven, the fact that the new
framework is implemented in the Java programming languafgghough JMorven is
the successor to an existing qualitative reasoner, theicteence engine is completely
novel as it uses non-constructive approaches and is implaseompletely in parallel.
JMorven adopts several features from its predecessor vanediscussed in more detalil

in chapter 4.

1.2 Novel Contributions

Throughout the work during the PhD several novel feature® fieeen implemented in

JMorven. These novel contributions are as follows:

1. A novel portable architecture with parallel optimisaso the parallelisations are
abstract allowing the implementation to benefit from mudtiprocessors or mul-
tiple computers in a distributed computing network. Thiswas JMorven to take

advantage of several different hardware setups.

2. The use of auxiliary variables in a non-constructive envinent. Previously, these
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have been used constructively which requires orderingettnstraints and limits
models to those with no algebraic loops. These auxiliariabées can also be used

in parallel which is novel.

. Using n-th order Taylor Series as an integration method. Most #gsnon-

constructive qualitative reasoners use Euler integraiioce they only reason about
one derivative per variable. JMorven uses multiple dekreatand automatically
integrates with as much derivative information as posdiblgive more accurate

integration approximations.

. Incorporating several non-constructive fuzzy intesiatulation techniques. Inter-
val simulation makes use of a QR model and a partially spédifigial state and
uses numerical techniques to simulate the system behaweuatime. Previously,
all successful interval simulators have been implememeddonstructive manner

limiting the types of model which can be used.

. The ability to produce asymptotically sound and comptet@-constructive simula-
tions. All previous methods produce either sound or conepiesults but IMorven
offers a method which is both sound and complete as the nuaibtrations is

increased. Monte-Carlo methods are also used as a quickxapyation to these

results.

. Offering the ability to carry out numerical simulationsmconstructively from a
gualitative model description. This allows precise nuedrsimulation trajectories

to be calculated if a precise initial state can be defined.

. A single non-constructive simulation engine which isatap of reasoning on the
spectrum from fully qualitative to fully quantitative allang it to be used through-
out the development of any model design from concept thrqugtotype to final

product.
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1.3 Thesis Organisation

The work contained in this thesis is divided into three maant The first part com-
prising chapters 2, 3, 4 and 5 introduces the field and clijieaalyses several existing
implementations which are used and extended to create #voihe second part, con-
sisting of chapters 6 and 7 presents the JMorven implementand all design choices
that were faced during development. The third and last martaéning chapters 8 and 9
presents the results and findings of the experiments usestthee JMorven implemen-
tation with discussions and conclusions presented railgain the work as a whole. The

chapters are briefly summarised below:

e Chapter 2 This chapter introduces the field of qualitative reasonimdjthe motiva-
tions behind it. The different modes of operation of a typauzalitative reasoning
engine are briefly summarised. Design choices are presemeding ontological
choices and algorithm approaches. Finally a brief overaésome existing quali-
tative reasoners is given with a more detailed discussi@SiM since it is one of

the main predecessors to JMorven.

e Chapter 3 A brief introduction to parallel computing is given detadi important
aspects of performance increases and how to define the edfjced parallel al-
gorithms. A review of qualitative reasoning and parallemgmiting techniques
combined is presented before a critical analysis of Pa@BM; the only known

existing qualitative reasoning engine to be implementeqzhirallel.

e Chapter 4 This chapter begins with an introduction to fuzzy numbera asethod
of representing uncertainty. Two existing fuzzy qualitatreasoners, FuSim and
Morven are analysed since they introduced many of the featimcorporated into
JMorven. A non-constructive synchronous simulator, SyM€Ss briefly dis-
cussed as the ideas used in it are extended and used in JMorgenduct semi-

guantitative and quantitative simulations.
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e Chapter 5 In this chapter, numerical simulation is introduced andhtégues for
integration are discussed. There is also a brief introdadi interval arithmetic
and the problems encountered when using it. There is aarditalysis of the ex-
isting semi-quantitative simulation strategies. Thedldrfto two main categories;
those that are based on QSIM and those that use fuzzy nurdbsusnmary of the

many approaches is given at the end of the chapter.

e Chapter 6 JMorven is introduced detailing the algorithms used and tiwy in-
teract with each other. Each main stage of the qualitatipe@ds discussed and
how it was implemented in parallel. Finally, some extra dees of JMorven are

discussed.

e Chapter 7 This chapter begins by presenting a new representatiomfayfnum-
bers so that they can make use of interval arithmetic. Tlegmation technique used
in JMorven is outlined and there is a discussion of some ofabkniques used to
aid narrowing intervals when used in a non-constructivemsaas in JMorven. All
of the methods of simulation are presented which fall into twain categories;
those based on real intervals and those that approximaevahs as a group of

points.

e Chapter 8 The results chapter is split into three main sections. Tis¢ $ection
presents the qualitative experiments and results from tteenerify that JMor-
ven produces the correct output and that auxiliary varglgien be used non-
constructively. The second section outlines the experisnesed to determine how
much of a benefit the parallel algorithms offer and how mudakespup is achieved.
Finally, the third section shows the performance of eacividdal technique used
in semi-quantitative simulation and summarises the prascams of each. The
semi-quantitative simulation is also tested to show thaisb benefits from the

parallel architecture of JMorven.

e Chapter 9 Finally the results are discussed and a conclusion is drafiecting on

the initial aims and motivations of the work. Some future kvigralso proposed.



Chapter 2

Qualitative Reasoning

2.1 Introduction to Qualitative Reasoning

Numerical simulation can provide extremely useful pradits about how systems be-
have, but it is not always possible to construct quantiéatodels due to a lack of un-
derstanding or a lack of precise numerical information eikample obtaining values for
kinetic parameters for the rate of cellular reactions arerelable with current experi-
mental protocols (de Jong, 2003). If this is the case cagrgim a numerical simulation
is impossible; however qualitative reasoning can be ussigaal to suggest behaviours

from the information that is known.

Qualitative Reasoning (QR) is an area of Artificial Intefiigce which was first studied
in the late 1970s and early 1980s (de Kleer, 1977, 1979; Bort280, 1981; Kuipers,
1986). Qualitative reasoning has much in common with eadgarch conducted in Naive
Physics (Hayes, 1979, 1985) and common-sense reasoninge(&u1984; Simmons,
1986). The motivation behind QR was to emulate how the humian performs basic
operations without the need for precise numerical inforomator to be able to reason

when there is some knowledge or information missing.



2.1. Introduction to Qualitative Reasoning 20

QR has been used in industrial applications, one of the faisigoa self-maintaining pho-
tocopier (Shimomura et al., 1995) and more recently a disigrtool for an engineering
plant (Coghill, 2000) and diagnosis in the automotive induéPrice, 2000; Struss and
Price, 2004). There are several different fields in which @R lkeen used including dig-
ital circuits (Williams, 1984a; Kaul et al., 1992; Lee, 1899ncluding detecting failure
modes and its effects (Pugh and Snooke, 1996; Lee, 19992, &€ and Ormsby, 1992),
tutoring (Lulis et al., 2004; de Koning et al., 2000), diagiso(de Kleer and Williams,
1987; Ng, 1991, Liu and Coghill, 2005b), system identificat(Kay et al., 2000), learn-
ing (Coghill et al., 2004) and many others (Bredeweg andsS{ra004). More recently
areas utilising qualitative reasoning are biology (Treeand Park, 2003; King et al.,
2005) and ecology (Salles and Bredeweg, 2003) since thess &ack enough precise
data to use numerical techniques. For a review detailingynpaactical uses of quali-
tative reasoning see (de Jong, 2003). There is still muehrast in the field of QR and
a future vision of applications include The Science Bottuat vehicles, understanding
and managing complex natural systems, interpretation ahical data and robust au-

tonomous problem solvers in the face of uncertain situat{&nice et al., 2005).

Qualitative Reasoning can been described as the studyagdreng without numbers’.
Numerical techniques use real numbers which have infinitdircality (Coghill, 1996;
Shen, 1991). At the other end of the precision spectrum is@esguantity which covers
the complete real number line, although this is not very uwlsa$ all mathematical op-
erations on this quantity space give the same result. Thelssthusable quantity space,
termed the signs, therefore{is 0 -} which has a cardinality of three. The signs can also
be used to specify the derivative information of a variabla dynamic system, this infor-
mation helps to describe how the variable changes over fitis. simple representation
is very useful in determining behaviours, although sonmgthn between purely quali-
tative and purely numerical is sometimes desired when tisemgore precise numerical
information available, yet not enough to carry out a nunaisanulation. As such, some

gualitative reasoners use quantity spaces with more grecimerical information than
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the signs; for example QSIM (Kuipers, 1986) uses ordinati@hs defined by landmark
values and intervals between the landmarks. Fuzzy set&€f/d®65) are an alternative
method to analysing complex systems with imprecise or authig information (Zadeh,
1973). The desire to combine both qualitative reasoningaral numbers was the main
motivation for a new type of reasoner (Shen and Leitch, 1@&@®jhill, 1996). Fuzzy
numbers are used to define quantity spaces allowing a defjasetaguity to be inherent

in models.

To be able to predict the behaviours of a system, some methaefiaing it is required.
A qualitative model is used to define all of the variables oystesm to reason about and
how the variables relate to one another. Constructing thaabtative models requires a
decision to be made be made about what ontology will be uskxtdoproceeding. The

next section discusses the ontologies used in the field ditafixze reasoning.

2.2 Ontologies

An ontology is a representation of how one perceives thedydhlerefore the language
used to define this world is often called the ontology. Theeglaree common ontologies

used in qualitative reasoning, each of which are briefly sans®ad below.

2.2.1 Process-Oriented Ontology

The process oriented ontology was first developed by Fofrb(s, 1981). The process
oriented ontology was originally developed as an implemtgor of Hayes’ Naive physics
(Hayes, 1979, 1985). The motivation behind this approachtevareate models of steam
plants and other similar engineering systems. This typgsiksn can be described by the
processes which exist or are created and how they directhdaectly influence entities

within the system. For example, if there is a radiator in awashich is turned on then
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there is a heat source causing the process of heat flow fromadietor to all objects in

the room causing their temperature to raise. Forbus firgggeed Qualitative Process
Theory (Forbus, 1984) using the process centred ontologyatar went on to develop
the Qualitative Process Engine (Forbus, 1990). This ogiolmas also been utilised in
other systems, including a model-based planner based aegses known as Excalibur

(Drabble, 1993)

2.2.2 Device-Oriented Ontology

In the device oriented ontology models are described bydateected devices inter-
acting via lossless ports. It lends itself very well to eleall circuitry where electrical
components can be thought of as the devices and the wiregciimg them can be ap-
proximated by the interconnecting ports. The motivatiombe this method was to create
engineering models which have a degree of re-usability @mddrcan be used hierarchi-
cally. The first reasoner to use this approach was EnvisierK(der and Brown, 1984)
although several since have also been developed includibgSteve (Price, 2000) which
uses Failure Modes and Effects Analysis (FMEA) as used imEIléPrice et al., 1995)

and the Jacquard project (Hunt et al., 1993).

2.2.3 Constraint-Oriented Ontology

In this approach models are created using constraints lmesexdlinary differential equa-
tions which are abstracted for use qualitatively; theseemmaed Qualitative Differential
Equations (or QDES). The motivation behind this approathasalmost any system can
be described using a set of equations and it offers a simitatefling approach to tra-
ditional numerical simulation. The Qualitative Physican@mler (Crawford et al., 1990)
was developed to translate QPT models based on processe®mpie a set of con-

straints for use in QSIM thus showing that it is possible te tie constraint-oriented
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ontology to model processes. The most famous constraiedbgisalitative reasoner is
QSIM (Kuipers, 1986) which will be described in more detaikection 2.6. Many other
systems have followed this approach including FuSim (SineinLitch, 1993) and Mor-
ven (Coghill, 1996) (the predecessor to JMorven).

2.3 Modes of Operation of a Qualitative Reasoner

To aid analysis of qualitative behaviours, qualitativdestaare used. A qualitative state
can be thought of as a snhapshot of the behaviour of the whotlehat an instant or
interval in time. The current values of all variables maketl qualitative state. For
example, a model with three variables A, B, and C may exHhigtfollowing qualitative

state:

A: +

C:0

For this example, there would be at most 27 possible unicatessthowever not all are

guaranteed to be consistent with the model.

Variables in a model can be separated into two categorieggamous variables (also
known as system variables) and exogenous variables. Endogevariables are those
which are internal to a model or those which the user has rexidoontrol over, for

example the heat inside an oven. An exogenous variableesreattto the model and can

be directly controlled, for example the temperature knothefoven.

Imprecise information occurs when the exact values of égor system parameters are

not known; instead ranges of values, or qualities, are usegpresent all possible values
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which the variables or parameters may take. Incompletenmddon occurs when there
is an entity that is incompletely known; often this is theatelnship between variables.
In this case, monotonic functions can be used which do natiregrecise detail about
the relationship between two variables - these are disdussee in section 2.6.2. Qual-
itative reasoning predicts the behaviour of systems wiih ithprecise and incomplete
information. As such, there are many behaviours prediaedhiese systems. This sec-
tion summarises the different modes of operation of a tymieastraint-based qualitative

reasoner.

2.3.1 Qualitative Analysis and Transition Analysis

There are two main stages of a typical qualitative reasdhesg are Qualitative Analysis
(QA) and Transition Analysis (TA) (Williams, 1984b). Dugrthe Qualitative Analysis

phase all values of variables are analysed and checkedrsistency with the model and
the consistent values are then used to generate qualitatites. How this is achieved
depends on the implementation; a selected few are disclestsedn this chapter. The

Transition Analysis phase involves determining the triamss that are possible between
the qualitative states. This phase may, or may not be exg¢deigending on the mode of

operation required from the qualitative reasoner.

2.3.2 Directed Graphs

There are a few different structures that are used to représe predicted behaviours of
systems, for example trees and graphs. The one used in JMigraalirected graph so a

brief outline of the directed graph is given here.

A directed graph is a structure which contains nodes andteéideedges. Nodes in the

graph are used to represent qualitative states in a quaditatasoner and the directed
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edges are used to indicate a transition from one state th@niotthe direction specified.
Directed graphs have an advantage in that they can contalit ©ehaviours therefore
infinite behaviours from oscillations can be representeti@tupy very little memory.
Self-transitions are used to dictate that a state may tramgself; this is typical for most

states apart from those that pass through a landmark oruedber.

2.3.3 Envisionments

An envisionment is an exhaustive list of all the of the quasiNe states a model may exist
in. There are two main types of envisionment which are dsed$elow. Simulation is

often termed an attainable or partial envisionment; thiissussed in section 2.3.4.

2.3.3.1 Total Envisionment

A total envisionment is used to determine every possible stanodel may exist in for
all values of the exogenous variables. The total envisiorinmay be useful to determine
what possible states can occur from a given model. The nuoifbstiates quickly ex-
pands with the complexity of the model or cardinality of theagtity spaces used, thus a

complete envisionment is often used.

2.3.3.2 Complete Envisionment

Complete envisionments are very similar to total envisients in that they display all of
the possible states a model may exist in, however they hawalditional constraint in
that some or all exogenous variables are specified whichlgregluces the complexity
of the directed graph. This is a useful tool as all the possskdtes can be viewed for a

system when the inputs to the system are known or can be sukcifi



2.4. Constructive vs Non-constructive Methods for Sinmiafat 26

2.3.4 Qualitative Simulation

Qualitative simulation is a step-by-step operation whidpcts all qualitative behaviours
of a model from a given initial state. Qualitative simulatis usually performed using
asynchronous simulation or event-drive simulation. Atiahstate is required for simula-
tion to take place although this does not need to be a fullgiBpd state (if the state is not
fully specified similar problems to the total envisionmerg@ with the complexity of the
calculated directed graph). All possible transitions adewated from the initial state to
determine all of the successor states. Simulations canrb@ped in a similar manner to
depth-first search or breadth-first. In a breadth-first matireesuccessor states are then
used to calculate all transitions for the next level of sgesoe states whereas a depth-first
search expands one successor state at a time at each lewsinTiiation carries on until
a limit is reached or once all states reach an equilibriuns{@ady) state. It is worth not-
ing that a simulation carried out with an empty initial stateuld provide similar results

to a total envisionment in that all possible states wouldtdrithe directed graph.

2.4 Constructive vs Non-constructive Methods for Simu-

lation

There are several different methods for carrying out sitria in QR which can be split

into two main categories. These two categories are termestiewtive methods and non-
constructive methods (Wiegand, 1991) depending how thetints are used. The two
methods are discussed below with a description of the tgalerand a discussion of some

of the advantages and disadvantages associated with each.
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2.4.1 Constructive Simulation

Constructive algorithms are defined as ones that generatihné¢hvalues of the endoge-
nous variables directly from the model definition. This isiaged by using the system
equations and integration techniques to predict succesdoes to the endogenous vari-
ables and using the model to construct the remaining vasalalues. The values of all
variables are constructed during the process hence thectaratructive simulation. The
most common method of integrating the dynamic equatione isse Euler integration

which is the same as first order Taylor Series expansion agrshelow:

x(t+ 6t) = x(t) + ©(t).0t

This formula generates the valuexobt timet + 6t based on the value afand its deriva-
tive at timet with a given time step oft. This integration is carried out for all system
variables resulting in the successor values for all magegwof the variables on the left
hand side. Once this stage is complete the model equatierteem utilised to construct
the values of the remaining variables and derivatives. Taeblacks of this approach are
that the system equations must be specified in a specific fionitasto ordinary differen-
tial equations and these equations must be causally ordEnglis not always possible as
ordering may be impossible due to algebraic loops. This atetill therefore not work
when algebraic loops appear in the model. Algebraic loope avhen the value of one
variable cannot be computed as it itself must be used to leddctihe successor values, for
example in the system of equations below (taken from (Gelli@91) and simplified by
removing all equations extraneous to the algebraic leagmannot be calculated due to

the algebraic loop.
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uz = Uy —

Ulle*’il

11 =19 + 13

us

13 = ﬁ:&
The loop here is found as appears on the right hand side of the equation for soligng
i3 is required to compute the value @fwhich is required to find the value af.. Finally
u, is required to compute the value ©f therefore an algebraic loop exists and cannot be
dealt with by a normal constructive approach. Algebraigkoccur in many different
areas including electrical circuits as described abowdpbical systems (de Jong et al.,

2003) and diagnosis (Mosterman et al., 2000).

2.4.2 Non-Constructive Simulation

An alternative approach is to adopt a non-constructive otetar simulation. This tech-
nique involves generating all possible values that vagisbtay take and using the model
equations to discard all inconsistent values. This can besaed by using integration
or predefined transition rules based on integration andybies equations to filter out

inconsistent values.

The next stage involves filtering out tuples which are incstest with the remaining
constraints, i.e. for a tuple to be consistent with the matielust be consistent with all
of the constraints individually. This method does not regjany specific type or ordering
(lwasaki and Simon, 1986) of equations making it simplentwpce usable models. The
main advantage of using non-constructive methods is thatetsawith algebraic loops

can be analysed.
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It has been shown that constructive approaches and noirectinge approaches to simu-
lation give the same results in qualitative reasoning (@hdi®96; Coghill and Chantler,
1999). In the non-constructive method all behaviours aregged and then tested for
consistency with the constraints, however in a constraatigorithm the system variables
are propagated and then used to calculate all of the renganamables in the constraints.
This essentially produces the same output as the constemtresponsible in both cases
for determining whether to keep or discard certain behasiolVith this in mind, it is
clear that a non-constructive algorithm has advantagdminttproduces the same output
but it can also cope with algebraic loops and also does noineegny prior ordering of

the constraints.

To demonstrate how a non-constructive system can deal witdgebraic loop, the ex-
ample from the previous section is used. If it is known tRat= 1), R3 = 20k,
U, = 60v andi, = 7.5mA thenus can be calculated as follows:

assume a large range for the unknown values

i3=1[0 10°
il=1[0 10
ul =[0 10
u3 =1[0 10

now loop through the constraints

i3 = [0.0000 5.0000001268882145 * 10?°]
il =[0.0075 5.0000001268882145 * 10?°]
ul = [7.5000 5.0000000752373311 * 10%®]

u3 = [0.0000 52.5000]
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looping again through the constraints gives:

i3 = [0.0000 0.0026]

il =[0.0075 0.0101]
ul = [7.5000 10.1250]
u3 = [49.8750 52.5000]

it is clear at this point that the values are rapidly conveggianother loop through the
constraints gives:

i3 =1[0.0025 0.0026]
i1 =[0.0100 0.0101]
ul =1[9.9937 10.1250]
u3 = [49.8750  50.0062]

which gives very narrow ranges. Continuing the loops 3 mioneg gives us exact num-

bers as shown:

i3 = [0.0025 0.0025]
il =[0.0100 0.0100]
ul =19.9937 10.0003]

u3 = [49.9997 50.0062]
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i3 = [0.0025 0.0025]

il =[0.0100 0.0100]
ul = [10.0000 10.0003]

u3 = [49.9997  50.0000]

i3 = [0.0025 0.0025]
il =[0.0100 0.0100]
ul = [10.0000 10.0000]

u3 = [50.0000 50.0000]

This shows that within 4 iterations of the constraints theies of unknown variables had
been calculated to within approximately 1% of the corrett@and that after 7 iterations

the exact value was calculated (to within the precision ebB2loating point numbers).

2.5 Existing Qualitative Reasoning Engines

Over the past twenty years a lot of research has been underritakhe area of qualitative
reasoning resulting in several qualitative reasoningreesyi Forbus’ main influence was
simulation of engineering systems, in particular steanmiglavhich led to the develop-
ment of the Qualitative Process Engine (Forbus, 1990) basdds Qualitative Process

Theory (Forbus, 1984). As mentioned previously, this reasabout processes and how
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they directly or indirectly influence objects in a model. §hias been used in several dif-
ferent environments including model-based planning (P&l 993) and ecology (Salles

and Bredeweg, 2003).

CA-EN (Bousson and Travé-Massuyes, 1994) is a constbaiséd qualitative reasoner
which conducts synchronous simulations, i.e. those tleadidaven by a regular time-step.
CA-EN can reason with causes and constraints by using twaledlevels of constraints.

The global constraints level defines all of the constrainiagigns and the local constraint
level is used to indicate processes as in QPT. Variables kEQAare expressed as either
a real interval or a symbol depending on the available in&drom. What results is a

simulation algorithm which can reason with multiple degretimprecision and produces
output envelopes for the simulations. The main disadvantath this approach however

is that it uses constructive methods.

Order of magnitude reasoning (Raiman, 1991) extends imadit qualitative reasoning
techniques by determining the relative sizes of expressithrat is whether two expres-
sions are approximately the same, or one is slightly latgeger, or much larger than the
other (and similar for smaller). This was applied to sevditierent models and found
to aid the qualitative descriptions to provide a better autprhere have been several
extensions to basic order of magnitude reasoning, inctui@man’s own FOG , O(M)
(Mavrovouniotis and Stephanopoulos, 1988) and CHEPACHEAvViS, 1990). Another
extension to order of magnitude reasoning has been implechémthe CA-EN simula-
tor described above which uses fuzzy numbers to depict hawasiables’ magnitudes

relate to one another.

Another very popular qualitative reasoning package is Q@Ihich has influenced the
development of many others including FuSim and Morven. Q& Miscussed in more

detail in the next section.
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2.6 Qualitative SIMulation (QSIM)

QSIM is one of the most developed qualitative reasoning @ge&. In this section, QSIM
and its features are discussed since it is the predeces®aratiel QSIM - a parallel

implementation of QSIM which is critically evaluated in $hthesis. Also, JMorven has
some features which have evolved from QSIM through the iméeliate systems FuSim

and Morven.

2.6.1 Introduction to QSIM

QSIM was first developed in the early 1980s by Kuipers (Kuspé&®86) and was one
of the first qualitative reasoners to use the constraintdasélogy. These constraints
are specified in a special form of mathematical differerggliations abstracted for use
gualitatively, termed Qualitative Differential Equatear QDEs. The motivation behind
using constraints in this form was that engineering and dyaaystems could be easily
modelled using these types of equations just as diffedestiaations would be used for
numerical simulation. QDEs are discussed in more detaihérext section. Kuipers

guarantees that QSIM will find all the possible qualitatiehaviours for a system but
extraneous behaviours may also be included hence the Qgidithim is complete but

unsound.

2.6.2 Qualitative Differential Equations

Qualitative Differential Equations (QDES) are an abstoacof ordinary differential equa-
tions (ODESs). Variables in a QDE are the qualitative eqe@rtto the numerical variables

of the corresponding ODE. A typical ordinary differentiguation is shown

mi = F — kx
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wherez is displacement of a mass from its rest position; denotes the velocity of
the mass;i represents the acceleration of the mass the external force applied to
the mass and is the stiffness of the spring. This is an equation for a sarErmonic

motion mass-on-a-spring system. To generate a QDE equty#he variable: would be

gualitative instead of quantitative as in the ODE (see tix¢ $extion for more information
about qualitative values in QSIM). Also QSIM requires coaistts to be specified as
two or three place predicates. The following set of qualieatlifferential equations are

equivalent to the ODE above (assuming unit mass and unitgptiffness):

D/DT (A, X)
D/DT (B, X)
MINUS (C, X)
ADD (B, F, C)

Some systems do not have enough known information to modsi tising strict quanti-
tative functional relations therefore QSIM also defines otonic function constraints. A
monotonically increasing function is whose derivative asitive for all values therefore
if one variable increases the other is guaranteed to ineregimilarly for monotonically
decreasing functions whose derivatives are always negafikese are defined in QSIM

as follows:

M*(P, Q)
M~(Q.R)

To add extra numerical information to the QDEs, QSIM defin@sasponding values.
These are when a variable is known to be at a certain valueathe of another variable
or variables may be explicitly stated. This extra inforraatcan help reduce the number

of spurious behaviours generated. For example, in monofanctions it is often found
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that (0,0) is a valid corresponding value stating that when one of theabkes in the

monotonic constraint i§ then the other must also e Although this example shows
the use of corresponding values in a monotonic constrdiay, tan be used in any type
of constraint. Some work has also been undertaken into uisieryals as corresponding

values (Say and Kuru, 1993).

2.6.3 Qualitative Variables

Quialitative variables in QSIM are of the form of@nag, qdir) pair, whereggmag denotes
the qualitative magnitude of the variable apdlr is the qualitative direction of change
or derivative of the variable. The direction of change of tlagiable can take one of
three possible valuesnc, dec or std, which represent increasing, decreasing or steady
respectively. The possible values of the magnitude depenkloav the quantity space
is defined. A quantity space in QSIM is an ordered list of gassiandmark values
Iy < ly < ... <l which represent qualitatively important values. Some haaiks may
be pre-defined for the model, and new landmarks can be addedydimulation. The
variable magnitudes may take the value of one of these larkdnoa an interval (a range
between two landmarks denoted By /;.[). The simplest quantity space, the signs, is
defined by three landmark valuespo, 0,+00. All negative values lie in the interval
(—o0, 0] and all positive values lie in the intervéll, +0c0). Time also adheres to this
landmark representation where temporal landmarks are¢ected times when variables
change to or from a landmark. Landmarks may also be createagdine running of a

simulation in QSIM when variables reach important behargpa.g. a turning point.

QSIM generates Qualitative States at all time points anehvats. States consist of the
values for all of the variables in the model at the given tiffieese states along with the
transitions between them form the qualitative behaviofite@simulation in the form of

a behaviour tree. How these transitions are defined is dieduia the next section.
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P-transitions| QS(v,t;) QS (v, ti, tit1) I-transitions | QS(v, t;,tiy+1) QS (v, tit1)
P1 <lj,std > <lj,std > 11 < lj,std > <lj,std >
P2 < lj,std > < (lj,lj+1),inc > 12 < (lj,lj+1),inc > < lj+1,std >
P3 < lj,std > < (lj=1,1j),dec > 13 < (i, ljq1),ine> | <ljtpq,inc >
P4 <lj,inc> < (lj,lj+1),inc> 14 < (lj,lj+1),inc> < (lj,lj+1),inc>
P5 < (lj,lj+1),inc> < (lj,lj+1),inc> 15 < (lj,lj+1),d60> < lj,std>
P6 <lj,d€C> <(lj,lj,1),dec> 16 < (lj,lj+1),d80> <lj,dec>
P7 < (lj,lj+1),d60> < (ljfl,lj),dec> 17 < (lj,lj+1),d60> < (lj,lj+1),d60>
18 < (i, ljq1),ine > | <I*, std >
19 < (lj,lj+1),d60> <l*,8td>

Table 2.1: Transition Rules in QSIM

2.6.4 Transition Rules

To define how Qualitative States transit between one andthereate Qualitative Be-
haviours, QSIM defines a list of transition rules. Thesedition rules adhere to the
Intermediate Value Theorem and the Mean Value Theorem fralouluis (Spivak, 1967).
These continuity constraints dictate that for a variabléramsit from one value to an-
other, it must pass through all intermediate values. Vaéidgitions for a variable depend
on whether the current time is at an interval or a landmarlblela.1 shows transition
rules as defined in QSIM for a continuous functiowith landmarksl;_; < [; < ;4.
P-Transitions signify transitions from a time point to ateival and I-Transitions denote
transitions from a time interval to a point. This is effeeliwqualitative euler integration,
for example, if variabler is increasing then the transition rules state that the sscce
value ofz will be a quantity greater than the current one (or ifs an interval the suc-
cessor value may be the same interval or the next greatemihkgl. The intermediate
value theorem ensures that the successor quantity is thel vehimmediately greater to

the current quantity before transition to any other quaastit

2.6.5 QSIM Algorithm

The QSIM algorithm aims to generate all consistent qualg@abehaviours from the
model, consisting of QDESs, and an initial state. QSIM is aetyb constraint satisfac-
tion problem solver which solves a constraint network ofialales and their domains,

or quantity spaces, across a number of constraint relatiottse from of QDEs. The
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output from the QSIM algorithm is a behaviour tree consgstihall possible qualitative
behaviours from the initial state. QSIM achieves this bylgsiag the initial state and
determining all possible successor states by applyingrtresition rules and checking
consistency with the equation constraints. These stagethan analysed and their suc-
cessor states are generated, continuing until no moresstegdeft to analyse. Successor

states are not computed for states that satisfy the follpwamditions:

The current state is identical to a previous state resultinthje same successors

thus avoiding an infinite cycle.

The current state is a transition state i.e. one that is defiloeing the transition

from one state to another

The current state is an equilibrium or quiescent state pine. that has no possible

unique successor states due to all qualitative directienmgysteady.

The current time i$ = oo

In the QSIM algorithm described above, the state transtame constrained by the tran-
sition rules and the generated qualitative states arereomstl by the qualitative differen-
tial equations of the model. This latter constraint filtesjdit into two sub-components

termed the Tuple Filter and Waltz Filter which are discudseldw.

2.6.5.1 Tuple Filter

The Tuple Filter in QSIM iterates through a number of tuples/mled to check the con-
sistency with the constraints. It achieves this by goingulgh each constraint in turn.
Each constraint generates an exhaustive list of all passiples and discards any that are

inconsistent. Tuples which remain are therefore condistgh that individual constraint.
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2.6.5.2 Waltz Filter

The Waltz Filter in QSIM is actually an AC-3 implementatiavigckworth, 1977) rather
than a pure Waltz algorithm (Waltz, 1975). This is a pairwiiter which executes on
each possible pair of adjacent constraints (two constgauhtich share a common vari-
able are said to be adjacent). All tuples are checked foristmmey and if found to be
inconsistent with either constraint they are discardedQ8&iM, the Waltz filter is exe-
cuted incrementally - after each constraint is checked thigtuple filter, the Waltz filter
acts on the set of tuples. This causes some of the tuples ofsaramt to be discarded

before the tuple filter is again executed thus allowing ahtlggrformance increase.

2.6.6 Form All States

Once all tuples have traversed the constraint filter theypereessed to create qualitative
states, this is the function of the ‘Form All States’ stagene3e qualitative states are
guaranteed to be consistent with the tuples and are useddteayualitative behaviours
following the transition rules. QSIM uses a backtrackingoaithm which performs a
depth-first search. This recursively calls itself with tlexihconstraint if a tuple is found
to be consistent with the partial state. Once the final camgtis reached and a tuple is

consistent a solution is found in the form of a qualitativagest

2.6.7 Global Filters

As described above QSIM uses constraints in the form of QDifsti@ansition rules to

filter qualitative behaviours which are carried out perstoaint or per-transition. The
addition of Global Filters allows QSIM to add constraintsigthcan be applied over a
whole qualitative behaviour. One of the most common gloliteré is one which ensures

the law of conservation of energy is not broken (Fouche angé¢s, 1992). Qualitative
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simulation may break this law, e.g. a spring without any exdeforces may exhibit
a behaviour that the amplitude of oscillations increasehvis not possible in reality.
This global constraint forces these oscillations not twease thus observing the law of

conservation of energy.

2.6.8 Extensionsto QSIM

QSIM is one of the most popular qualitative reasoning erganailable and as such a
lot of further research has gone into expanding it. Therenany extensions to QSIM
which have been developed to add extra functionality or cedhe number of spurious
behaviours. Some of these extensions filter out too manwimira and impinge on the
completeness of the QSIM algorithm resulting in not all festhaviours being included
in the simulations. It is beyond the scope of this thesis taitiall of the many extensions
to QSIM, the reader is directed to (Kuipers and Chui, 198°¢ &ed Kuipers, 1988, 1993;
Fouche and Kuipers, 1991; Hossain and Ray, 1997; Hofbaubanddoumas, 2001) for

further reading.

One type of extension to QSIM which is of interest to the stoflyhis thesis are the
development of semi-quantitative and interval based axes for example NSIM (Kay
and Kuipers, 1992), Q2 (Kuipers and Berleant, 1988), Q3l&aeat and Kuipers, 1990),
QuasSi (Bonarini and Bontempi, 1994a), SQSIM (Kay, 1998) BedSIM (Clancy and

Kuipers, 1998). Some of these are discussed in more detlpter 5.

2.7 Summary

In this chapter, the field of Qualitative Reasoning has bagoduced with the aims and
motivations behind it. These include the ability to reasbowt models when only im-

precise or incomplete knowledge is available about eithemtodel structure and/or the
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parameters of the model. Several strategies for accompudisihis have been implemented
from the research undertaken. These differing methods e discussed and it is pro-
posed that the constraint centred approach offers the nexdbifity as a representation

for defining models. As such, efforts have been concentm@ateskisting qualitative rea-

soning engines that adopt the constraint ontology inclyithie popular QSIM. QSIM has

been reviewed as itis a direct influence of several of thermsgiiscussed in thesis includ-
ing Parallel QSIM, the only known existing parallel qudiita reasoning implementation.
The review follows a discussion of the differing modes of igien that qualitative rea-

soning offers including envisionments and simulationalahd complete envisionments
provide a representation of the global behaviours of a systesubset of all behaviours
by fixing the values of exogenous variables whereas sinmmajenerates the possible
behaviours for specific initial states. Constructive and-nonstructive approaches to
gualitative reasoning were discussed and it is argued tratonstructive approaches of-
fer an advantage in that they are more general in that theytimpose causal ordering

on the model constraints and can reason with models thaticoaigebraic loops.



Chapter 3

Parallel Qualitative Reasoning

3.1 Introduction to Parallel Computing

Modern computing allows an easy and inexpensive means obicamg the power of
several processors or computers to be used to run the sanesprd his allows execution
times of these processes to be drastically reduced. A l@s#farch has been undertaken
into developing parallel algorithms for many tasks, andwhghere are many standard
means of comparing parallel algorithms. Leighton (Leightt®92) describes the speed-
up, .S, as the time taken for the best sequential algorithm to cetapver the time taken
for the best parallel algorithm to complete. The speefyfor an algorithm running on

n processors is defined as:

where S, is the sequential time an8l, is the time taken to run on processors. The

efficiency of a parallel algorithm is defined as:
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The optimal speed-up of an algorithm is termeadear Speed-upThis is when the effi-
ciency of the algorithm is constant for al| i.e. whenE = 1. Although the theoretical
optimal speed-up for an algorithm is linear, it is not trii@ achieve. In fact, it is often

only possible to achieve speed-up whéreecreases asincreases.

To benefit from parallelisations, the tasks to be implengntest not be inherently se-
guential for example depth-first search (Reif, 1985). Tlaeetwo main techniques for
generating a parallel implementation of a given task, tlaesé&nown as data parallelisa-
tions and algorithmic parallelisations. A good examplecdéig the process between
data and algorithm parallelisations is presented by (Gageet al., 1995) which describes
generating an algorithm for sorting. The obvious way to dora@n dataD onn proces-

sors is to split the data into smaller subséts,such that

vxeLn . dx C D

du..ud,u..Ud, =D

and then sort each subset on its own parallel processorisTaisexample of data paral-
lelisation. The problem with this approach is that aftefgaimcessor has executed, each
subset is indeed sorted; however the subsets must be cairtoirmeeate the sorted set
D. Using similar approaches to generate larger subsetshatitll set is sorted achieves
only a marginally better time than the sequential algorittimarefore an algorithmic par-
allelisation should be used instead. One such method toidontiolves ranking each
item to be sorted. The rank can be computed by assigning eaaligh unit to a pair
of numbers and scoring the entries depending on which idegreall possible pairs are
evaluated resulting in a rank for each entry which can theodsel to order the entries
in one pass. The interested reader is directed to (Greenlal, €995) for a detailed

discussion of an efficient method of sorting a dataset inlighra
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3.2 Qualitative Reasoning and Parallel Processing

There has been very little research on implementing péisateons in qualitative reason-
ing specifically; the only major work carried out to date iattlof Platzner and Rinner
(Platzner et al., 1997) which is discussed in more detaileictisn 3.3. However it is
worth investigating existing research undertaken in pelisations used to speed-up sim-
ilar algorithms that have been used in qualitative reagpmrthe past. Since QSIM has
been recognised as a type of Constraint Satisfaction Rrof@eCSP) solver (Clancy and

Kuipers, 1998) it is worth discussing some work undertakeo parallelising CSPs.

Constraint-based qualitative reasoning can be considefaahstraint Satisfaction Prob-

lem of (V, D, P) where:

e V =uy,...,v, is the set of variables of the CSP

e D = Dy, ..., D, is the set of domains whet®; holds a set of possible values for

variablev;

e P = Py, .., P, denotes the set of constraint relatiorf3. operates on a subset of
variables froml/ such that all variables il are constrained by at least one element

in P.

The qualitative reasoner attempts to find solutions of tI8& @here:

¢ the setl/ represents the set of qualitative variables in the QDE
e d; € D is equivalentto the quantities a variablanay take from the quantity space

e P is the set of constraints of the model.
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Three main classifications of parallel CSP algorithms weesgnted by (Luo et al., 1994)
which are briefly stated below. A summary of parallel unitgiigen first. Parallel units are
disjoint computational nodes which independently solveablem. Parallel units can be
central processing units, separate computers (or node®twal processors as in Intel’s

HyperThreading technology.

e Distributed Agent Based (DAB) This is where the variables are distributed be-
tween parallel units. Due to constraints having multiplgalales, there is a lot of

communication required between parallel units in thistegg

e Parallel Agent Based (PAB)This is where the domains of the variables are dis-
tributed between parallel units. This effectively solveS2P sub-problem and can
use any sequential CSP algorithm. No communication is sacgbetween parallel

units during execution.

e Function Agent Based (FAB)This is where functions which are repeatedly exe-
cuted can be distributed between parallel units. This requhe architecture to

have a shared memory type.

Of these strategies, the Parallel Agent Based method is g common having been
used in many CSP implementations including (Lin and Yan@58%; Burg, 1990). The
PAB approach lends itself particularly well to QR due to itslity to find all solutions
of a CSP whilst requiring no communication between paralhitis and being able to use
any sequential CSP algorithm in each parallel branch. Tliiisg of the whole problem
into sub-problems by the domains of the variables makesedews the valid tuples of a

constraint can be used to create sub-CSPs.
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3.3 Parallel QSIM

Parallel QSIM was developed by Marco Platzner (Platzne96)1@nd Bernhard Rinner
(Rinner, 1996). The motivation behind their work was to teea more efficient im-
plementation of the popular QR package, QSIM, which was todeel as part of a larger
project,Distributed Real-Time Expert System for Fault Diagnosi&dohnical Processés
(Rinner, 1996; Platzner, 1996; Platzner and Rinner, 1999812000; Platzner et al.,
1995, 1997). Platzner concentrated on designing and dewneglao-processors for inten-
sive calculations that were highly repetitive with the idleat a hardware implementation
would increase the speed of execution greatly. To take ddgarof the hardware and in-
crease efficiency, Parallel QSIM was developed in C. Rinreex igsponsible for creating
the parallel architecture which would be central to Par&i8IM. Combining their work
resulted in an implementation of QSIM which was several démagnitude faster than
the original LISP implementation of QSIM. This section centrates on the work of Rin-
ner and the parallel architecture of Parallel QSIM as ththésarea of most relevance to

the work undertaken for this thesis.

3.3.1 Design Choices

The design of the parallel architecture for Parallel QSIMsvaémed at a hardware im-
plementation since concurrent research was being uneertakdevelop coprocessors
to speed-up several highly repetitive calculations. Arhaecture was required which
would distribute computation between several paralletsumhich would each contain
one of these co-processors. Rinner’'s aim was to developlabdegarallel architecture
for the most computationally intensive stages of the QSIybathm. Scalability was

defined by Hwang (Hwang, 1993) as having three aspects:

IProject conducted at the Institute for Technical InformstiGraz University, Austria.
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e Problem-size Scalability. This is when a parallel impletaéion should be able to
perform well with an increase in problem size, ideally lineae. if a problemP;
executes in time, then a problem of times the complexity?, should complete in

time ty = c.ty

e Machine-size Scalability. For a system to be machine-siaéable, it should be
able to exhibit a near-linear speed-up in execution timeaternumber of parallel
units available. i.e. Problems on a machine witbarallel units should takie= th

to completé.

e Generation scalability. A system should be able to exhibadyspeed-up on cur-
rent generation computers, but equally future generattboemputers should also

benefit from similar speed-ups.

Rinner acknowledges that his design does not address thkeprof generation scalabil-
ity; this is due to the fact that since they use a dedicated\ane setup, there might not be
a future generation of hardware for their solution. Rinnamsiders machine-size scala-
bility as the main focus of his scalable design, and comntbatproblem-size scalability

is also considered.

After analysing the runtime of each stage in QSIM it was fothmatt the constraint filter
dominates the running time of QSIM. This was then broken dtwdetermine which

part of the constraint filter was most computationally exgpe® It was found that the
execution times of each stage of the constraint filter depemdthe mode of operation.
For initial state processing, which provides similar réstib an envisionment without
transitions, the form-all-states stage was highly dontinaowever during generation of
successor states, the tuple filter took most time to execRiener therefore concen-
trated his efforts on parallelising the tuple filter and fealhstates stages of the QSIM

algorithm, both of which are discussed below. The tuplerfitteuld also benefit from

2t.q IS Sequential time, the time taken for a problem to complate sequential (non-parallel) system.
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the co-processors developed by Platzner as it required mgensive calculations which

could be implemented in hardware.

3.3.2 Tuple Filter

The tuple filter and Waltz filter were combined in the origiQEbIM algorithm. Rinner
devised the figure (shown in figure 3.1) showing the data dégrasies of the incremental
tuple filter and Waltz filter. In the figurpvalsdenotes possible values for the variables

and the tuples are labelled agles The original idea behind this incremental filter was

constraint, constraint, constraint,,

&—— tuples

CSP-Solution

Figure 3.1: Data Dependency of the Incremental Tuple Faltet Waltz Filters.
t-f denotes the Tuple Filter stages, W-f the Waltz Filtegstaand f-a-s is the
form-all-states process. Each Tuple Filter has a constagian input and the dotted
lines indicate that the Tuple and Waltz Filters are execagzplientially.

that the Waltz filter would discard possible tuples, and reitiuple filter stages would
have less to filter thus taking less time to execute. In omlgarallelise the tuple filter,

Rinner decided to separate the incremental tuple and Whtesfi The problem with this
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was that now the tuple filter would have more work to do sinceatild have more tu-
ples to filter, however this was balanced by the fact that r@wValtz filter needs to be
executed only once. Figure 3.2 shows the data dependenbg skeguential tuple filter

and Waltz filters. With this sequential tuple filter it can Heatly seen that there is no

constraint; constraint; constraint,

&——» tuples

Figure 3.2: Data Dependency of the Sequential Tuple Fildrn\&altz Filters.
t-f denotes the Tuple Filter stages and W-f the Waltz Filter.

inter-dependency between constraints within the tuplerfiBince there is no data depen-
dency between the constraints, it is trivial to paralletlsetuple filter - each parallel unit
simply executes each constraint in turn. The disadvantaiyetis is that the maximum
degree of parallelism is set by the number of constraintsfiteere are fewer constraints
than available parallel units then the utilisation of aablé resources will be sub-optimal.
Rinner carries on to discuss scheduling algorithms for tipdet filter although it is not
clear why since the Parallel QSIM was developed for a spdu#idware setup of equal

processaors.
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3.3.3 Form-All-States

The Form-All-States stage takes as input, a set of valicesifdr each constraint in the
model and creates a solution which is a set of all possiblidisals to the CSP. This differs
from traditional CSPs in that they often require merely oakdvsolution or a select few

rather than a complete set of all possible solutions.

Rinner summarises three common methods for distributing @gorithms, shown in

table 3.1. Rinner decided to use a PAB technique and partitie problem into sub-

distributed constraint satisfaction strategies
characteristics DAB | PAB | FAB
preferred problems | naturally distributed tightly coupled | tightly coupled
algorithm design specially designed| any sequential | any sequentia
memory type shared / distributed shared / distributed shared
communication cost medium / high lower n/a
load balancing poor / fair good good
scalability poor fair / good reasonable
termination detection difficult easy easy
find a solution poor fair / good good
find more solutions poor good / excellent fair

Table 3.1: Characteristics of Basic Distributed CSP Sgiate(Luo et al., 1994)

problems by generating sub-sets of tuples which are usedlte sub-CSPs. Each of
these CSPs can then be solved and the solution for the whdesO®erely a union of

the solutions of all the sub problems.

3.4 Ciritical Analysis of Parallel QSIM

Platzner and Rinner admit to their implementation beingexsiec hardware architecture
(Platzner et al., 1995) which limits the usability of theiork. To be used widely, a
software solution should be developed which is not limited specific hardware setup,

in other words the solution should be hardware-independedtportable. This would
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allow it to be run on a large variety of systems and hence bd temore problems.
Due to the hardware limitations, Parallel QSIM was onlyddsbn up to seven parallel
units. Whilst the tests were largely successful, it wouldrieresting to see how QR
scales up to more parallel units for complex problems. Argcessor to Parallel QSIM
should determine how the efficiency of the algorithm behawes a large range of parallel
units and should be compatible with a large number of systeaisng it a more feasible

option.

It is apparent from the design of the Parallel QSIM architexzthat machine-size scala-
bility has not been fully met. In (Platzner and Rinner, 20@) seven processor test-bed
demonstrates only a speed-uplof5 < S; < 3.5 with the average speed-up reported
as less thary; < 2. (This gives a maximum efficiency df < 0.50 and an average of

E < 0.29 when running on seven processors.)

A runtime analysis shows that of the runtime of QSIM, the t@st filter occupies 80%
of the total execution. The tuple filter takes approxima@&o of the constraint filter
time to execute which means that the Waltz filter takes apprately 24% of the total
execution time to complete. The Waltz Filter execution tiweuld become far more
apparent when the constraint filter and form-all-states@anein parallel - for the seven
processor system, assuming a near-linear speed-up the Mi&dr would run for nearly
90% of the total execution time. Even though this is the cB&szner and Rinner have
not implemented a parallel version of the Waltz Filter. Ossson this may be was that the
original QSIM algorithm uses an incremental Waltz Filtexdalthough Parallel QSIM
uses a type of sequential Waltz Filter, Platzner and Ringgont that they still use some
sort of incremental filtering once the result of one tuplesfills received (Platzner and
Rinner, 1995). If they were to lose the idea of this increraeWaltz Filter, and instead
implement a fully sequential one, further benefits of patelation should be apparent.
Any new implementation should parallelise all stages of dlgorithms including the

Waltz Filter.
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They concentrated on the qualitative analysis stages afiQBarallelising the transition
analysis phase was not attempted, therefore any futurégdasesstem should also attempt

to parallelise this stage.

These issues, combined with the limitations of QSIM itseigke it clear that there is

need for a new parallel qualitative reasoning engine forgemsystems.



Chapter 4

Fuzzy Qualitative Reasoning

4.1 Introduction

Fuzzy computing offers a mathematical method of dealingy wétgueness. Fuzzy num-
bers are ranges of numbers with an associated degree of mamgbevhich states how
much of a quality a given value has rather than binary ‘yeshot. For example, if we
define the region between 5'6” and 6’ to be normal height folenaaults, and 6’ to 6’6"
to be tall. If we have two mend & B, whose height differs by half an inch such that
Ais5'11.75” andB is 6'0.25". A would be considered normal height aBdconsidered
tall, yet their heights are almost indistinguishable. éast we can add some extra infor-
mative detail to the regions allowing both men to be clagsifiethe same group. Figure
4.1 shows an example of the two regions discussed in normtalemetical terms and in
fuzzy terms. If we consider the fuzzy terminology and lookat ‘tall’ either is, then we
can see thatl is tall to a degree an# is tall. For this example, this is a much more infor-
mative description suggesting that both men are about the saight. It is worth noting
that members may belong to more than one group at a time, betcould equally well
be considered where they are placed in the ‘normal heigltigr It is this additional

information that becomes useful for systems where unceytaieeds to be dealt with.
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Membership Membership
A A

100%— 100%

normal tall normal tall

> Height T T T "Height

56 60 66 56 60 66
(a) (b)

Figure 4.1: Standard Mathematical and Fuzzy Ranges.
(a) shows two ranges for male adults with a crisp range frahte 6’0” for normal
height and 6’ to 6’6" for tall men. (b) shows an example fuzeyaqtity space for the
same ranges.

Fuzzy sets are often mistakenly thought to be similar to @lodly distributions. The two
methods both approach the problem of likelihood. Howewezy sets can be thought of
as a representation for the degree of truth of a value, whgmesbability deals with the
degree of belief of an outcome to occur. Probability distilns must combine to cover

all possibilities and are defined such that:

wheren is the number of all possible outcomes aRdis the probability of outcome

occurring. There is no such constraint for fuzzy numbers.

Combining qualitative reasoning with fuzzy numbers haslteée motivation for creat-
ing an inference engine which can cope with ambiguity anckttamty better than either
approach alone. This chapter discusses two such engin&mK&hen, 1991), an im-
mediate successor to QSIM, and Morven (Coghill, 1996)(grnynknown as Mycroft)
which succeeds and improves on some of the shortcomingsSifiiFty implementing
many features from a combination of inference engines dietdsod different algorithmic
approach to solve the model equations. Only features teatsed by JMorven are dis-

cussed, the interested reader is directed to the originedsafor a full discussion of all
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features. A brief discussion of another successor to MQI8gNCSim, is also presented.

4.2 FuSim

FuSim (Shen, 1991) was developed as a successor to QSIMgaaltliazy number repre-
sentation to the variables of the qualitative models. Thévaton of this was to create a
system which could deal with ambiguity and imprecisionédretihan a purely qualitative
or purely fuzzy approach. Fuzzy numbers allow a finite dissa&on of the real number
line which ensures that variables have a finite number ofiplesgualitative values they
can take, and that the fuzzy numbers also cover the rangé¢ pbsdible values. These
two propertiesFinitenessand Coverage respectively, are necessary for qualitative rea-
soning. Another property required is that @fanularity which is ensured by selecting
an appropriate arbitrary discretisation of the possihiges of variables. Fuzzy numbers
offer a great advantage over crisp regions in that there lsmger an abrupt change tran-
siting from one quantity to the next, instead the changeaslgal which is closer to how
people think (Zadeh, 1975a,b, 1976). Another advantagsit@uduzzy numbers is that
due to the semi-quantitative nature, the prerequsitegfaporal calculations are readily
available in a numerical form therefore fuzzy numbers lémahiselves better toward sim-
ulation than a purely qualitative approach. This was a natitm of Shen, in particular to

create a diagnosis system for continuous dynamic systems.

The following sub-sections describe certain features &iffuthat are of importance to

the subject of this thesis.

4.2.1 Fuzzy Four-Tuple Parametric Representation

Fuzzy numbers provide a so-calledft boundary for numeric regions, allowing a de-

gree of membership. These regions take shapes similar balpitdy distribution curves,
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although they have subtle differences. Figure 4.2 showsgrain of an example fuzzy

region. It can be seen that the shape of the region is cunadatrvery efficient to imple-

Membership (%)

100

Figure 4.2: Typical Fuzzy Number.

ment nor define arithmetic operations. To overcome thign@l&r representation is used
in FUSim which approximates the fuzzy number curve whilst sffering the benefits
of fuzzy membership. This representation is known as they&bur-Tuple Paramet-
ric Representation and offers a much more efficient methadilise fuzzy numbers. A
four-tuple is described using four valuesh, o and s which define the fuzzy number as

shown:

0 r<a—ao

allr—a+a) z€la—a d

pa(r) =1 1 r€la b
Brb+p—2) z€b b+ 0
xr>b+ 0

This is shown graphically in figure 4.3. This representatitakes it possible to describe

real numbers, real intervals, fuzzy numbers and fuzzyvatsivery easily.
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Membership (%)
100 y

v

Figure 4.3: Fuzzy Four-Tuple Parametric Representation.

4.2.2 Fuzzy Quantity Spaces

Variables have a domain of quantities from which they cam thleir values, known as
a quantity space. A quantity space in FuSim is a set of convezyfvalues spanning

a region of the real number line, as shown in figure 4.4. Uguhk quantities in the

t

nmax nl zer pmax

BeynByvaN

Figure 4.4: Fuzzy Quantity Space.

guantity space overlap giving some degree of ambiguityialfées can adopt their own
associated quantity space and can have different quapttyes for the magnitude and
derivative. The granularity of the quantity space dictdtesnumber of possible tuples that
are valid for a constraint; increasing the number of quistitesults in a larger number
of states being produced which takes longer to calculateneder, this provides more
detailed information about the states. It is worth notingt tthe signs can be defined by

the quantity space shown in table 4.1
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Quantity ‘ a b a [
- —oco 0 0 0
0 0 0 0 0
+ 0 o0 0 0

Table 4.1: The Signs Quantity Space

4.2.3 Fuzzy Arithmetic in FuSim

To be able to use fuzzy quantities in the constraints, a satitifmetic operations need
to be defined. Table 4.2 shows the definition of arithmeticaipens used within FuSim.

With the common arithmetic operations defined, it is possibicalculate resulting fuzzy
guantities from the constraints. The next section dessfilmsv this result is then used to

determine which fuzzy quantities are used from the quaspce.

Let: m = la,b, T, 5],n = [c,d,,?]

Operation Result Conditions
-n (—d, —c, 5, v) alln

. (5 T T v)) n>00,m <00

1

(a+cb+d7+vﬁ+5) all m,n

(a—d,b—c,7+9,8+7) allm,n

mXxmn (acbda7+c7‘—7'%b5+dﬁ+ﬁ5) m >q0,n>¢0
(ad,be,dr —ad + 76, —=by +¢cB—0y) m <o 0,mn>¢0
(be,ad, by — ¢+ By, —dT +ad —10)  m >¢0,n <o 0

bd, ac,—bd — df — (0, —ay —cT +71y) m <g0,n <g0

Table 4.2: Arithmetic primitives used in FuSim

4.2.4 «-cuts

a-cuts are used in FuSim to generate a crisp quantity fromzyfgaantity. Ana-value is
used to dictate the cut-off point for the conversion. Anynpan the fuzzy quantity above
this a-value is converted to the crisp quantity. Anvalue of 0 means that the whole
range of the fuzzy number is used, i.e. fram- o to b + 3 whereas am-value of 1
means that only the region fromto b is used. FuSim uses anvalue that is is greater

than all the crossing points of adjacent quantities in thentjty space. This ensures that
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no crisp quantities overlap and therefore the temporalutaions remain positivea-
cuts represent the idea of typicality by dictating the mimmmembership of a quantity
for it to be considered a member which narrows the overaljeaof a fuzzy number.
Figure 4.5 shows a quantity space with and withouttkaut. a-cuts are also used in the
approximation principle to reduce the number of possiblesigient values a calculated
fuzzy interval may be approximated to. See the next sectiombre information.

membership

______________________________ . . _.100%

(@)~ \>< ----------- T A >< ........ :

(b)

Figure 4.5: Taking the Alpha-cut of a Quantity Space
(a) shows a typical fuzzy quantity space and the alpha-dueua take. (b) shows the
result of taking the alpha-cut of the quantity space.

4.2.5 Approximation Principle

When a constraint is evaluated it is likely that the caledafuzzy result will not be ex-
actly equal to a quantity from the associated quantity splacthis case, th&pproxima-
tion Principleis used to determine which quantities from the quantity splae calculated
value corresponds to. The approximation principle stdtasthe calculated value can ap-
proximate by any quantity in the quantity space that overlajh it. To ensure that no

excessive values are included, all quantities and the leattlivalue are restricted to a
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crisp interval using the:-cut. Figure 4.6 shows an example of the approximation prin-
ciple. It can be seen that the calculated value overlapstwétsecond, third and fourth
guantities in the quantity space, therefore each of theaetdies are added to the possible

values for the calculation.

membership

Calculated Value

\
\

L~
\\ R

Quantity Space Values

D
VWV

Figure 4.6: The Approximation Principle.

4.2.6 Fuzzy Derivatives

FuSim uses fuzzy quantities for the derivatives of a vaeasd well as the magnitude.
This extra information allows temporal calculations to bad®a more easily offering a
more informative output than using merely the purely qaslie direction of change as
in QSIM. Derivatives take on fuzzy values from the quantipyase in the same way as
the magnitude. With a purely qualitative representatiora@able may be known to be
increasing, but this could be very slowly or very fast. Witle textra information from

the fuzzy values it is possible to see how quickly it is chaggallowing more precise

simulation results.



4.2. FuSim 60

4.2.7 Function Constraints

QSIM uses monotonic functions to describe the behaviowvdsst two or more variables
when the exact mathematical relationship is not known. ¥Yhhis is useful, it is a
weak representation especially when it is possible to hlageektra information in the
form of fuzzy values. FuSim uses Functional Constraintsciviallows any mapping of
possible values for one variable to be consistent with arothhis can vary from linear
relationships to complex non-linear ones. This additidaved a stronger relationship
between variables without knowing the exact mathematelaltionship. The variable
relations can be thought of as a set of mappings, e.g. forengunction if the left

hand side is medium then the right hand side could be eithherarelarge. There is no
constraint on the number of mappings and they can be disjdiné whole function is

described using a lookup table; an example function constiashown below in table

4.3.
A~ B | zero small medium large top
zero 1 0 0 0 0
small 0 1 0 0 0
medium| O 0 1 1 0
large 0 0 1 1 1
top 0 0 0 0 1

Table 4.3: Function Constraint in FuSim

4.2.8 State Transitions

As in QSIM, FuSim defines a set of valid state transitions ttemheine how a system
behaves over time. FuSim considers four different typeganisitions from variable

(Aq, By) to (A, Bo) summarised as follows:
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¢ Null-transitions — The null transition is when no transition takes place, \wlen

Al = A2 and31 =By

e M-transitions — Magnitude transitions occur when only the magnitude chang

the value of the derivative remains constant, i.e. wAes£ A, andB; = B,

e R-transitions — A rate transition is defined as when the derivative changethie

magnitude remains constant, i.e. whén= A, andB; # Bs

e MR-transitions — The final type of transition is the magnitude/rate transitand
this occurs when both the magnitude and derivative changtantaneously, i.e.

whenA; # A, andB; # B,

One restriction is used to the above; if a variable has a rgaber as the magnitude, then
an R-transition is not allowed to occur. This emphasisesthewransitions occur around

zero which is often implemented as a real number withb = o = 3 = 0.

4.2.9 Algorithm

Since FuSim is largely based on QSIM, the algorithm has menyesities. Like QSIM,
FuSim requires a model in the form of a set of constraints,aamidhitial state to which it
then produces an output of all the possible behaviours affteeem. FuSim achieves this

by progressing through the following algorithm:

1. Generate a set of valid transitions for each variablegrcthrent State, and calculate

the temporal information associated to each transition.

2. Filter the qualitative values for each individual coastt to ensure they are consis-

tent with the model.

3. Filter adjacent constraints to ensure pairwise comnsigte
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4. Calculate arrival time for all variables and use tempfitaring to remove conflict-

ing values.

5. Generate states and use global filtering to remove fusthges. Mark each remain-

ing state as a successor to the current state.

6. Repeat 2> 5 until no more changes are observed or a resource limit is met

As with QSIM, FuSim combines stages 2 & 3 to create an increah&altz Filter. The
above algorithm has many similarities with the QSIM aldunt however one main dif-
ference is the inclusion of advanced temporal calculatidmish give FUSim an advantage
over other QR techniques. These temporal calculations witee information as to when
states can exist and the amount of time they can exist forasmd benefit of using fuzzy

numbers over purely qualitative values.

4.3 Morven

The motivation of Morven (Coghill, 1996) was to create a ¢nrdive qualitative reason-
ing engine for use in a model-based diagnostic system (MBDI% motivation behind
using constructive techniques was to decrease the numbpunbus behaviours. Coghill
started by completing an in-depth review of many existingt®@hniques and created an
implementation which included all the advantages of higaesh into a single system.
The result was a novel framework for fuzzy qualitative reasg allowing the choice of
several algorithms. Additional features to this framewank discussed below along with

the central algorithms to Morven.

The original FuSim algorithm used temporal filtering to remaoonflicting values however the method
was incorrect. Coghill (Coghill, 1996) corrected the temgbfiltering calculations and shows that no values
can be removed at this stage.
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4.3.1 Differential Planes

In QSIM and similar QR engines the variable and model reprtesien is fixed which
is quite restrictive in that all derivatives of equations aalculated implicitly. The Pre-
dictive Engine (Wiegand and Leitch, 1989) utilises the kitace Algorithm (Wiegand,
1991) which allows more flexibility in the mode of descriptidifferential Planesvere
introduced which allow the model to be described at a moraileetlevel. The first dif-
ferential plane describes the model in a similar manneraoithwhich a typical numer-
ical simulator would require. Further differential plardescribe the model with further
derivatives allowing for more accurate simulation quéilgly. These further differential
planes are merely the derivative of the previous one buvathore structural information
to be included in the model explicitly. The motivation foighvas to reduce the number
of spurious behaviours generated by QR systems but in faetdtshown (Coghill, 1996)
that they do not. However, differential planes allow the eltet to have control over the
number of derivatives for each variable and also allow samphuations to be used for

the derivatives resulting in less states being generatad anvisionment if required.

4.3.2 Fuzzy Vector Envisionment

Vector Envisionment (Morgan, 1988; Coghill, 1992) is armsthonstraint based QR en-
gine, however it only reasons purely qualitatively, i.ethathe {+ O -} quantity space.
Morgan introduced multiple derivatives for variables whadlows the distinction between
linear and non-linear systems which was not possible in QsSiivbnotonic function rep-
resentation. With these extra derivatives it is possibleamy to determine the rate of
change of a variable, but also the curvature which is veryulisélthough this can be
achieved in QSIM by explicitly stating that one variable he tderivative of another or
by the use of extensions, vector envisionment does thigrattoally for all variables.
Variables are defined using a vector of length equal to thebewwf derivatives to reason

with, e.g. V = [+ + —]| states that variabl& is positive and increasing, but the
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amount it is increasing by is decreasing.

Morven furthers vector envisionment by extending it to thezly domain and terms the
featureFuzzy Vector Envisionment his is using the vector envisionment approach of
multiple derivatives per variable but also allowing thesbé fuzzy values instead of pure
qualitative values. Fuzzy Vector Envisionment and Diffgi@ Planes are combined to
provide a very powerful simulation technique offering faom information than previ-
ously possible with QR approaches. A variable and its daviesis termed a Variable

Vector in Morven.

4.3.3 Constructive Simulation

The distinction between constructive and non-constracipproaches was first hypothe-
sised by (Wiegand, 1991). QSIM and its derivatives use aaumstructive approach to
simulation. It was believed that due to this approach exwas spurious behaviours are
generated therefore Wiegand implemented a constructiaigue similar to that used in

numerical simulators.

Morven incorporates two simulation algorithms, one based @onstructive approach
and another semi-constructive approach. The reader isteddo (Coghill, 1996) for

details about the constructive algorithms.

4.3.4 Auxiliary Variables

Morven, like its predecessors, uses constraints that &@fgu using two or three vari-
ables. When creating these two or three variable conssriim differential equations it
is often required to create a temporary variable. Thesedeanypvariables define a range

of values which do not necessarily map exactly to any quastitom the quantity space.
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QSIM and similar approaches map this temporary variabtetim¢ quantity space using
the approximation principle thus unnecessarily widenirguariable’s range an therefore
creating unnecessary additional states. To reduce theenwhbpurious behaviours gen-
erated, Morven introduced the use of auxiliary variablelsese are variables which are
not mapped back to any quantity space, instead the value afixdhary variable is kept
temporarily for use between constraints. This is made ptesby vector envisionment
which allows variables to have any number of derivativesuidiong none thus leaving
only the magnitude of a variable. An example of the use of adliaty variable is given

below. If we have the following qualitative differential eation
= Pr+Q

This would be broken down for use in JMorven as shown:
aurA = P.x

T =aurA+Q

Variableauz A is a temporary variable and as such should not be mapped tardityu

space otherwise spurious states may be generated due foptfoxianation principle.

4.4 SyNCSim

It is worth mentioning one other fuzzy qualitative reasosiace it also attempts to carry
out qualitative simulations in a non-constructive mani$MNCSim (Bartlett, 2005) is a
successor to Morven but approaches the problem of simalagog a non-constructive
algorithm allowing it to reason with models which are notemsarily causally ordered,

or that contain algebraic loops.
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Models in SyNCSim are defined in a similar manner to thosesirpiedecessor, using
Qualitative Differential Equations to specify the consitaof the system and using fuzzy
guantity spaces to define the domains of the variables. Agrvéh, SyNCSim also uses
differential planes to explicitly define the derivativesaomodel and utilises fuzzy vector

envisionment to represent variable values across thefeeatifial planes.

The simulations in SyNCSim are carried out synchronousigguan internal clock in-
stead of asynchronously as in most existing qualitativeaears. The motivation behind
this approach was to generate an output that not only peetlietorder in which events
occur but also predicts accurate times between events.chtteae step all of the model
variables in an initial state are propagated using Eulegirtion and obeying continuity
constraints. If the continuity constraint is breached,ttime-step is reduced to the max-
imum allowable step which ensures the continuity constn@mains consistent; this is
termedMinimum Interval Euler IntegratiorfScott and Coghill, 1998). For example, if
variableV is currentlyp — small and after a time-step¢, the integration phase dictates
thatV” will becomep — large then the continuity constraint is breached sifitdoes not
pass throughy — medium. SyNCSim therefore reduces the time-stéf,,, until V' is
observed to pass through— medium. This is effectively a form of step-size refinement
for use in qualitative simulation. Once the successor \wlhave been calculated, all per-
mutations of the propagated quantities are used to genstattes which are then tested
for consistency with the constraints. The remaining cdasisstates are then marked as

successor states to the initial state.

The SyNCSim approach offers a method of non-constructiyectgonous qualitative
simulation and the results confirm that it is possible to us@-constructive approaches

in a synchronous simulator.
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4.5 Summary

The purpose of this chapter was to introduce the field of furaypbers for representing
numerical imprecision and their use in the field of quaMatieasoning. The combina-
tion of fuzzy numbers and qualitative reasoning inspireddbvelopment of FuSim and
its successors. The fuzzy four-tuple parametric reprasentis briefly discussed as a
method to simplify how fuzzy numbers are defined. This allfwzzy numbers and the
operations on them to be implemented more efficiently thamguseal’ fuzzy regions.
Fuzzy quantity spaces are defined as a method to specify viluely values are avail-
able. This discretization of the real number line allows aldative approach to fuzzy
numbers and is adopted by FuSim and its successors. Sesehnaiques to aid the use
of fuzzy numbers were introduced in FuSim. A fuzzy arithmmetas defined for the core
arithmetic functionsa-cuts are also used as a means to convert fuzzy numbers aito re
crisp intervals aiding temporal calculations and the ayipnation principle. The approx-
imation principle is used to determine which values fromdhantity space a calculated
value can be approximated by. Setting a leveut means that more quantities approxi-
mate the calculated value, whereas a higheut results in less quantities approximating

it.

Morven incorporated several useful features over FuSine. ude of multiple derivatives
per variable allows the behaviour over time to be simulatedenaccurately. The addition
of differential planes allows extra information to be ingetrin the model again increasing
the accuracy of simulations. One major improvement in Morv&as the addition of
auxiliary variables. These are temporary values which sed when equations are broken
down into 2 or 3 variable constraints. Since these variadtesemporary, no quantity
space is assigned which allows the exact values to be useskamnstraints and reducing

the number of spurious solutions.



Chapter 5

Simulation

5.1 Introduction to Simulation

Numerical simulation has been studied for many years. Térerenany well-known, tried
and tested techniques to simulate the behaviour of a syStkenmost common of these
techniques includes Euler Integration, Taylor Series Bgman and Runge-Kutta meth-
ods. The approach is very similar in each case, a system attiegs are expressed as
several ordinary differential equations. These equatasesused to estimate the succes-
sive values of the variables using some integration teclasig Taylor Series Expansion
(and Euler Integration since it is equivalent to a first ordlaylor Expansion) uses the
current values of derivatives to estimate the values afterestime stept = = — a. The

general formula for Taylor Series is:

) gy 0

f(@) = f(a) + ['(a)(@ — a) + —;

wheref(z) is the estimated value of the function after the time-steptha current value

of the system variable is denoted at time «. Below shows Euler Integration in a form
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more familiar to engineers:

(@) i=torst = f(@) 1=ty + L. f'(2)1=¢,

Euler Integration is used qualitatively by Morven (Scottlaboghill, 1998) which re-
places the transition rules for determining how qualiastates transit between one an-
other. The downside of Euler Integration is that it is notwaccurate and can introduce

quite large errors into a simulation.

More advanced integration techniques can be used to irectkasccuracy of the integra-
tion phase. The following equations define the fourth-oiRlenge-Kutta process (Press

etal., 1992):

kl = hf(xrwyn)

h k
by = hof(zn + 50t + 5
h k

_ ki ko ks kg 5
yn+1—yn+6+3+3+6+0(h)

whereh is the time step. The first equation estimates the differemgebefore and after
the time step. The second equation then uses this to find tlegedice in half of the
time-step more accurately. The third equation then spigstime-step again to get the
difference iny more accurately yet again. The last equation then uses tla¢adations

to provide the final estimation for the valuephfter the time-step, i.e4,, 1.

This method estimates the gradient of each variable ataaaggrmediate points between

the current time and the goal time. These estimates are thrabined to estimate the
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real gradient to calculate the values at the goal time. HigheeroRlUnge-Kutta methods
allow larger step sizes to be used without losing any furélceuracy, however the optimal
step-size cannot be known for all systems therefore sontetetep-size refinement is
common in many algorithms. Froese (Froese, 1961) providesvaluation of Runge-

Kutta type methods for the interested reader.

The methods of simulation described above are termed synohs simulation, or clock-
driven simulation. It differs from asynchronous simulati@as discussed in section 2.3.4
in that all variables are propagated at regular time-ste@s & no qualitative behavioural
changes occur. Asynchronous simulation is driven by eventshanges in behaviour

whereas synchronous simulation is driven by a clock.

Numerical simulation is a proven technique to estimate hgwnacic systems behave
over time however they cannot handle imprecision. One nietb@dd imprecision is to
use Interval Mathematics. Interval Mathematics is a wekkegched area and several good
text books are available discussing the area, includingofdl966, 1979; Lohner, 1987;
Alefeld and Herzberger, 1983). The main problem of intesiadulation is that intervals
widen unnecessarily over time when using them without amltiexhal knowledge of the

rest of the model (termed non-interacting). An example o ighif we take

y=1—-=x

z=3r+y
and set

r=1[1 2]

then we get
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z=3[1 2]+[-1 0]=[2 6]

however solving the two equations to elimingtshows that the result should in fact be

z=[3 5]

This above process generates an approximate hypercubeadthside representing the
interval of each individual variable after each equatios baen solved. The interacting
method proposed by Moore (Moore, 1966) uses a connectiorixmattransform the

co-ordinates using the partial derivatives of the modelis hiwatrix is created using the
partial derivatives of the system variables and is createx dor each time-step. Using
the connection matrix and the associated Jacobian matisxpiossible to calculate the

intervals without generating hypercubes hence no unnageds/ergence occurs.

Numerical Simulation is a very useful technique but, as wighmain motivation behind
Qualitative Reasoning, sometimes only imprecise or indetegnformation is known.
Creating qualitative envisionments of complex systemspraduce a very large number
of states which takes a long time to produce therefore sitounlgaare often better suited
(Milne, 1991). In this case a combination of the two methdtsas behaviours to be
generated in reasonable lengths of time. Semi-quanttatighniques can be used to
conduct simulation with the knowledge available. This isgseful as it allows analysis
of systems with incomplete or imprecise knowledge wheraasarmical techniques do
not. The rest of this chapter discusses several semi-qat@veisimulators that are known
in the field including QSIM-types Q2, Q3, NSIM and SQSIM as vasd some fuzzy
simulators, QuaSi, FRenSi and QFSIM.
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5.2 QSIM-based Numerical Simulators

In this section, a handful of semi-quantitative simulatmygines based around QSIM are

discussed with some comments about their performance.

52.1 Q2

The motivation behind Q2 (Kuipers and Berleant, 1988) wamfdement a system that
would allow numerical information to be embedded into giasilre models allowing extra
precision to be included. Not all variables in a system wddde associated numerical
information therefore traditional simulation technigqwesild not predict the behaviours
of a system, yet a qualitative model may benefit from the erframation and produce a
more accurate behaviour, i.e. one with fewer spurious hebes Additional numerical

information in Q2 can be of one of two types:

e Quantitative landmark rangésiin  max]

e Bounding envelopes of monotonic function

The range propagator used is similar to that of Davis (Da&88,7) which sets an initial
range for all landmarks which is then narrowed using the twaims until all ranges will

not narrow from further propagation. This results in a ramngi@equality for each variable
in the system. These values are used to solve the CSP. Q2sdsahe Mean Value

Theorem to propagate values across temporal landmarks.

The additional numerical information in Q2 is used to augtriea qualitative descrip-
tions, and as such is only available at landmark time-paimtdar to the qualitative state
descriptions in QSIM. Q2 can therefore be thought of as aialtype of global filter for
QSIM.
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One major disadvantage of Q2 is that the time step is verysedagnce a lot of spurious

errors are generated within the intervals calculated.

52.2 Q3

Q3 (Berleant and Kuipers, 1990, 1997) extends Q2 by intriodLstep-size refinement. It
achieves this by detecting gaps in the behaviour genergt&@8itM and Q2, and then in-
serts new auxiliary states within this gap. The new auxilsdates are interpolated to help
refine the ranges of the states. This is continued until thelteare sufficiently precise or
until no further narrowing of the ranges can occur. The nadtdn behind this work was
to create a detailed numerical behaviour with more pre@selts, and thereby also im-
prove the generated qualitative behaviour; thus bridgneggap between qualitative and
guantitative simulation. Both Q2 and Q3 maintain the congpless of QSIM however

they fail to stop spurious behaviour generation hence asewrd as QSIM was.

Q3 improves on the predicted simulation of a model by praxgdnore information be-
tween time-points. It is the belief of the author of this ikdabkat a system that does not
rely on refining qualitative simulation to generate numarinformation would be more

precise and offer better simulations.

5.2.3 NSIM

The motivation behind NSIM (Kay and Kuipers, 1992, 1993) wasreate a simulation
engine which could make use of any numerical knowledge irtiatcto the fully quali-
tative models. This was thought to be of most importance initodng tasks where it is

vital to detect an anomaly as early as possible.



5.2. QSIM-based Numerical Simulators 74

Models in NSIM are described using Structural Differentauations (SDEs), Qual-
itative Differential Equations (QDEs), and Semi-Quatitta Differential Equations
(SQDEs). The SDEs describe the form of the ODE variablesitgtia€ly and the cor-
responding constraints. These constraints, as in QSIMjeseribed by arithmetic oper-
ators and functional relationships. In addition to QSIM,IMSlescribes the functional
constraints in more detail, e.g. if they are monotonic, palia, sigmoidal etc. Finally,
the SQDEs represent the numerical imprecision of the modasameters of the model
are described by intervals and functional constraints efi@eeld using dynamic envelopes
which dictate how two variables change with respect to edobravith more information
than qualitative functions but not requiring a strict matiagical equation. The QDEs
describe the functional relationships and define the dom&@ach variable used in the

SDEs, i.e. the landmark values.

NSIM evaluates the upper and lower bounds of each constmapredict the behaviours.
Interval arithmetic is used to propagate these bounds wiastlts in widening of the
intervals. One problem of only using the upper and lower bisuof variables is that
this does not always guarantee to enclose all solutionsrdtcaints. For example, if the

interval A = [-1 2] is taken and one constraint is defined as

x = A?

then using the extreme points method, the calculated resuwild bex = [1 4] however

the real result should be= [0 4].

The output behaviours of NSIM are claimed to result in tigi@unds than are produced
by Q2, although Kay (Kay, 1998) admits that this is only befarcertain amount of time
has passed as NSIM behaviours diverge whereas Q2 bounds netoie stable. NSIM

aimed to provide a simulation strategy that improved itdmtéons as the amount of

information known increased - NSIM is a step in the right dii@n for such a system.
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NSIM is now used mainly as part of the SQSIM package as desttribthe next section.

5.2.4 SQSIM

SQSIM (Kay, 1998) is a semi-quantitative simulation endaased on QSIM and uses
the same model representation as NSIM. SQSIM makes use dfetnéquantitative
simulation to refine the behaviour tree of the qualitativewdation thus reducing the
number of spurious behaviours generated. It also uses théadive predictions to aid
some of the semi-quantitative inferences, e.g. if the déxig of variableA is calcu-
lated semi-quantitatively to be in the rangel 1] and the qualitative prediction is that

gmag(A) = inc then the semi-quantitative range can be reduce€d tol].

SQSIM combines the inferences made by QSIM, Q2 and NSIM amslrieduce the im-
precision in the predictions made by each. QSIM is used asathieal simulation process.
Q2 and NSIM are then used to augment numerical informatidreswelopes to the pre-
dictions and finally SQSIM combines the predictions to gateethe semi-quantitative
states. There are several ways in which QSIM, Q2, and NSIMangined which are

briefly outlined below:

e Dynamic Envelope IntersectionEnvelopes are generated with NSIM and Q2 sep-
arately. NSIM produces an output envelope which is iniiakry well bound but
the interval arithmetic causes it to widen after a time, wherQ2 defines a con-
stantly wide envelope. SQSIM combines these two envelogieg INSIM initially

until the envelope produced by Q2 is tighter.

e EventIntersection The envelope prediction from NSIM is combined with the event
descriptions from Q2 which can reduce the event ranges amgltaken for each
event. SQSIM uses this which can also lead to further reduastin other events in

the system.
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e Extremum Detection This is when the envelope produced by NSIM contains an
extremum: a local minimum or maximum. When the lower and ugpminds
of the NSIM envelope exhibit this extremum, the QSIM behaviis modified to

ensure that it also contains this local behaviour.

e Order Reduction Order Reduction is when the NSIM envelope diverges beyond
the Q2 envelope extremities, i.e. if the maximum and mininvatoies of the Q2
envelope are surpassed by the NSIM envelope, then the Q&wnimand maximum

values are used for the magnitude of the envelope and theatleei is set to zero.

e Re-Simulation SQSIM uses the previous states to predict values for sumcess
states, however sometimes the final states can be used tovrEedecessor states
particularly when equilibria are reached. In this casesinadlation can help reduce

the predicted behaviour between the initial and final states

Since SQSIM combines several other inference engines;éesdls in improving on them
individually however it still has a few drawbacks. Genedagavelopes can still suffer
from rapid divergence resulting in a predicted output whddfers greatly from the real
output. Since models are based on the QSIM specificatiorgblas are limited to one
derivative hence only Euler integration can be used whitroduces errors in integration.
These simulators also infer single intervals, inferringaifuzzy ranges is thought to be

more useful for ambiguous models.

5.3 Fuzzy Simulators

In the following sub-sections semi-quantitative simwatengines based on fuzzy num-

bers are presented.
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5.3.1 QFSIM

QFSIM (Vescovi and Travé-Massuyes, 1992) was motivatednbegrating numerical

simulation methods into a qualitative environment. Thiadkieved using fuzzy numbers
to instantiate qualities with some numerical informatid@FSIM uses the same fuzzy
four-tuple representation and fuzzy quantity space dedmias used in FuSim (Shen,

1991). QFSIM presents the following two methods:

e The Extremity Method. This method extends Euler’s method to incorporate fuzzy
operators based on the Extension Principle (Zadeh, 196t .nTethod is reported
to be complete but not sound in that it predicts all possibteames of a model but
also contains spurious behaviours. The extremity methecdha main disadvan-

tage in that it is not easily generalized for complex models.

e The Discretisation Method This method involves generating a set of discrete
points from the fuzzy parameters and simulating this groupoints to produce
an output that is sound but not complete. This method is aed in their Qual-
itative Behaviour Generation stage to produce a globaluutem the group of

simulations of points.

Problems with QFSIM are that the method is only applicablérsd and second order
systems; this limitation restricts the number and compyexd models that it can reason
with. QFSIM also uses a constructive approach which haddiions as mentioned in

chapter 2.4.1.

5.3.2 QuasSi

QuasSi (Bonarini and Bontempi, 1994a) is a framework of satars for simulating sys-

tems with imprecision using fuzzy numbers. QuasSi is basetherextension principle
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which is used to map an input fuzzy relation to some outputnadgeplied to a crisp al-
gebraic system. However, this requires an infinite numberatifulations for the fuzzy
representation used in QuasSi therefore an approximatigmgsed by Nguyen (Nguyen,
1978) is used which approximates the fuzzy region usingipielt--cuts to generate in-
tervals which can then be used by normal interval arithm@ticore, 1966). There are

three main algorithms within the framework, each of whioa lariefly described below:

5.3.2.1 QuaSil

The original QuaSi I (Bonarini and Bontempi, 1994c) aldumtuses fuzzy numbers and
either a system of ODEs or a set of fuzzy rules to define the ftodge simulated. It
works along the lines of a typical numerical simulator intthteeach time step the current
values are used for numerical integration and then the msdmsled to construct the rest
of the values. This is extended to intervals using the noeracting approach of Moore’s
interval arithmetic (Moore, 1966). Since QuaSi uses fuzagnbers, several-cuts are
taken to discretize the fuzzy values which are then simdlaféhe resulting simulator
is guaranteed to bound all of the results of the real sinaratiowever it suffers from
excessive widening of the intervals due to approximatirggdysstem variables as an n-

hypercube at each step.

5.3.2.2 QuaSill

Quasi Il (Bonarini and Bontempi, 1994b) incorporates theriamcting approach presented
by Moore based on the connection and Jacobian matricegabhsff approximating the
variables as an n-hypercube, this method maintains theacttens between the variables
and hence produces results which contain far fewer spugoass. They achieve this
using the property of sufficiency of vertices (or PSV) whigtetmines if it is possible

to compute any intervals from the extreme points only. Tés ts not sufficient for all
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systems therefore the correct results cannot be guarahteeelver QuasSi Il does not
suffer from unnecessary divergence of the simulated iatenSince QuasSi Il is based on
the interacting approach, it therefore must use a consteuapproach to simulation as
the system equations are used to construct the connectibdeaobian matrices. Hence

this method cannot be used to develop a non-constructieeitdg for simulation.

5.3.2.3 QuasSilll

Quasi lll (Bontempi, 1996) extends QuasSi Il by introducimgagtimisation technique to
replace the original sampling problem. The optimisatiomksdy first taking an initial
starting point, integrating and then using the gradientaro@e a new point. If a maxi-
mum or minimum is found, then the optimisation routine halkis improves upon the

PSV problem in QuasSi Il although it still does not guarantebdund all real results.

QuasSi presents an interesting simulation engine whichywesl positive results; however
there are a few drawbacks. QuaSi exhibits exponential cexitplwith the order of the

system being simulated. Computationally it is also vergmsive when simulations need
to be achieved over a long time since at each time-step tlmigptions need to be carried
out. Finally, the QuaSi approach is constructive therefocannot cope with algebraic

loops.

5.3.3 FRenSi

FRenSi (Keller et al., 1999) is a fuzzy simulator based onQuaSi approach. FRenSi
generates aV-hypercubé fuzzy region and the external surface is approximated using
corner points and cubic splines. FRenSi suffers from theegaroblem as QuasSi in that

the computational complexity is too great for it to be usedriactice. In his thesis Keller

IN = n + k wheren is the number of system variables in the model anglthe number of parameters
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(Keller, 1999) outlines a simplified FRenSi algorithm whishess processor-intensive.
This simpler algorithm takes the fuzzy regions and spliésithintoa-cuts and the corners
are numerically integrated as before, however instead ioigusplines to describe the
borders of the hypercube, several equally spaced sam@esad instead. At each step,
the minimum and maximum values of eackcut of each variable are recorded. What
results is a simulator which maintains a similar level oberyet executes in much less
time. Unfortunately, FRenSi still uses constructive meththerefore does not offer a

technique that can reason with more general systems asamstractive techniques can.

5.4 Summary

Of the semi-quantitative simulators described above,gl@sed on the non-interacting
approaches of Moore’s interval arithmetic use Euler’s raétbf integration which intro-
duces unnecessary errors. Even going one step further amglaisecond order integra-
tion technique would be of great advantage to reducing teeses. Unfortunately since
the simulators are based on QSIM and its derivatives, it g possible to use first order
integration methods as only one derivative of each varisdeailable within the model.
These simulators also tend to have problems with unnegetsgarval divergence which

introduces spurious results.

Methods based on the interacting approach offer a good atiaalwith few errors how-

ever these methods require a lot of computations and therafe not suited for practical
use. Moreover the interacting method requires a consteiepproach to solving the
system equations and therefore cannot cope with algelvapis|(and also require the

equations to be ordered). Table 5.1 summarises the simsidisrussed in this chapter.

It is clear that there is room for a novel simulator which wbaperate non-constructively

yet be able to simulate with few integration errors and naispis results due to diverging
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intervals. It would also be beneficial for it to be efficient foactical use.

| Simulator || Interacting?| Constructive? Fuzzy | Disadvantages

Q2 N N N Coarse time-step
Asynchronous
Q3 N N N Maintains spurious behaviours of Q
Asynchronous
NSIM N N N Interval divergence
Extreme points not complete
SQSIM N N N Interval divergence
Asynchronous
QFSIM N Y Y Doesn’'t handle complex models
Constructive
Quasi Y Y Y Constructive
Very slow
FRenSi Y Y Y Constructive

Table 5.1: Summary of existing semi-quantitative simutato
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Chapter 6

JMorven

6.1 Introduction to JMorven

JMorven is a novel abstract parallel architecture fram&v@r qualitative reasoning and
simulation capable of reasoning in a fully qualitative manm@ semi-quantitative manner
and a fully numerical manner. This is all achieved using nonstructive algorithms
which are more general, being able to cope with systemsabsgar of whether they are
causally ordered or contain algebraic loops. JMorven has beitten completely from
scratch in the Java language for maximum portability. JMarsucceeds and improves

upon the its predecessor, Morven (formerly known as Mydi@éghill, 1996)), by:

e incorporating parallelisations throughout the designahhallows the framework
to be distributed, substantially decreasing executior tamd thus making it more

applicable to industrial application.

e using totally non-constructive algorithms and the abildyuse auxiliary variables

in non-constructive algorithms.

e usingn-th order Taylor series integration which increases theiawy over Euler
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integration.

e incorporating several novel simulation algorithms whidlow non-constructive
simulations to be carried out semi-quantitatively and nueca#ly, and also provid-
ing output charts of the simulation behaviours. Algorithmdude regular-spaced

methods and Monte-Carlo techniques. See chapter 7 for mfanemiation.

e Simulating on the spectrum from qualitatively to quanivaly and doing so from

the same model representation.

The original motivation to create a qualitative reasoningiee was for it to be used in
developing a model-based planner. Since no portable ingal&ation was available it was
decided to create a basic qualitative reasoner. DuringdHg stages of development, it
was evident that there was place for an improved strateggribgualitative simulation.
Reading into the area showed that one research group haddaoto the benefits of
parallel computing to make QSIM more efficient however theeze a few drawbacks
with their work. This motivated the development of a bettstem which would make
use of an abstract parallel architecture allowing it malkeais wide variety of computing

environments.

As discussed in chapter 3, Platzner and Rinner (Platzndr, di997; Platzner and Rin-
ner, 1998, 2000) proposed and demonstrated that it waship@s$sispeed up the popular
QSIM package (Kuipers, 1986). They achieved positive tesyl porting QSIM to the C
language, by parallelising several stages and using aatedibardware setup to carry out
intensive calculations. There were a few drawbacks wittwibik undertaken by Platzner
and Rinner. One limitation of the work on parallel-QSIM wéattthe architecture was
designed to run on a restricted number of parallel unitdtiagun a non-scalable imple-
mentation. Overcoming this limitation by developing antedost and portable architecture
should result in a more usable qualitative reasoner thatdaadlow it to be used to solve

a wider variety of problems. Another drawback with their Wwaevas that they did not
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parallelise all stages of execution.

Another motivation for JMorven was to develop a simulatiogiee capable of reason-
ing on the spectrum from fully qualitative to fully quantitee which would mean that
the same tool could be used throughout the development ofmaalel design from con-
cept through prototype to final product. This is useful in ltieginning stages of design
when not all factors are known, nor is specific numerical kieoge therefore full qual-
itative models are most useful. As the design continuesemamerical information is
known hence a semi-quantitative model can be used to preeleviours. Finally, a full

guantitative model can be derived leading to the designeofittal product.

JMorven is the first known fuzzy qualitative reasoning eegmmake use of parallelisa-
tions to benefit execution time. JMorven benefits from paligktions in all stages of the
reasoner which is a first for QR. These parallelisationsrazerporated into an abstract,
portable architecture which allows JMorven to be scalaliles also the first to provide

a range of simulations from fully qualitative to fully quéative. Merging these together
provides a parallel architecture for simulation which iscathought to be novel. Hav-
ing this framework implementing these features is belieietde useful and contribute

significantly to the field of qualitative reasoning.

The rest of this chapter discusses the qualitative aspétke aMorven framework, in
particular the stages of qualitative analysis and tramsiéinalysis that have been paral-
lelised. There is also a discussion about the use of auxitemables in a non-constructive

algorithm.
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6.2 Design

Although JMorven is based largely on its predecessor, Myrgeveral design choices
have had to be made due to JMorven reasoning in a non-cotgtratanner. The result
is that JMorven combines many features from several egisPR packages including
QSIM, FuSim, Parallel QSIM and Morven. As with these paclkag®orven implements
the Qualitative Analysis (QA) and Transition Analysis (Tphases. These are discussed

in more detail below. Figure 6.1 shows how the QA and TA phasesombined to create

the qualitative component of JMorven.

Parse Input
Files

A 4

Get mode of
Operation

A 4

Simulation or

Qualitative
Analysis

Transitions in

Envisionment N

Transition
Analysis

&

Simulation

\ 4

Output
Results

Envisionment

Figure 6.1: Flowchart of QA and TA phases in JMorven Operatio
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6.2.1 Qualitative Analysis

The Qualitative Analysis (QA) phase in JMorven is respoesfbr analysing the con-

straints and ensuring that qualitative states are consisith them. This is typically split

into two stages, the constraint filter and the state generive aim of the constraint filter

is to generate and test sets of tuples which are consistémewery constraint. There are
several methods for achieving this but the most common vegh two step procedure
consisting of a Tuple Filter and a Pairwise Filter. The Tugleer generates sets of valid
tuples for each constraint in the model which are guaranteds unique and consis-
tent for the current constraint only. To ensure all tuples@mnsistent with the complete
model, a pairwise filter is used to test each pair of conggdor inconsistencies. Once
the pairwise filter has completed, a set of consistent tugl@sin which are then used to
generate qualitative states. Each qualitative state aanlik analysed by the Transition

Analysis phase for simulation.

6.2.2 Transition Analysis

The Transition Analysis (TA) phase takes each qualitati’gesand generates a list of pos-
sible successor states to be tested by the QA stage. Gagetfatise successor states is
achieved either by integration or by following a set of pfeted transition rules depend-
ing on whether simulations or envisionments are requirsgeetively. JMorven allows
two modes of simulation; one which reasons qualitativelyrat all variables in the states
adhere to the values in the quantity space. A directed ggemerated for all states
reachable from the initial state therefore all qualitatdhaviours can be extracted from
this graph. The alternative simulation mode in JMorven isied out numerically using
exact numbers or fuzzy numbers to represent imprecise saltlgs simulation mode is

discussed in more detail in chapter 7.
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JMorven implements a novel parallel architecture, as shownfigure 6.2, which allows

it to make best use of the available resources, whether itthigale processors or multiple

computers in a distributed computing environment. Thidiéecture was developed in

Java for maximum portability. The following sections déserthe main stages in detalil,

including the primary function of the stage and how it hastiegplemented in parallel.
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Figure 6.2: The JMorven Parallel Architecture Overview.

6.3.1 Parallel Tuple Filter

The tuple filter is responsible for iterating through eachstmint in turn and providing a

list of valid tuples. A valid tuple is a set of consistent adnlie values for the constraint,

e.g. for the constraint shown:

If B issmallandC is mediumthen possible values fot may includemediumor large

A=B+C

depending on the quantity space used. The tuple filter i®regiven a list of tuples to

check for consistency or it can generate all possible ctergisuples from an exhaustive

list of all possible quantities.
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The tuple filter in QSIM was analysed by Platzner & Rinner {Biar et al., 1997). They
constructed the data-dependency graph of the tuple filtWealtz filter shown in figure
3.1. The incremental Waltz Filter used in QSIM could be repthby a sequential pairwise
filter. Platzner & Rinner found that while the incrementaéamas designed so that tuples
could be discarded earlier thus having fewer tuples to fitteg speed benefit was not
great. This speed increase was certainly not significanjpeoed to the speed increase
by paralellising the tuple filter. Splitting the tuple filtand Waltz filter into sequential
filters results in the data dependency graph shown in fig@eThis allows the parallel
tuple filter to execute each constraint in its own executioit since there are no inter-
dependencies. The Waltz filter merely waits for all constsaio be fully filtered before

proceeding with its own filtering method.

JMorven uses containers to hold certain entities duringu@i@n. These containers are
simple data structures similar to linked lists and do notehamy mechanism to protect
data when accessed from multiple execution units. Thisvalloptimal performance to

be achieved when accessing the contents of the containgrsate must be taken when
accessing to ensure that if multiple execution units acttesslata concurrently then no

corruption will take place. Mutexes are used to protectragdhis.

Each constraint is distributed equally between a numbemaotainers; the number of
containers is equal to the maximum number of execution awasable. One JMorven-
Thread (see Appendix D.1 for the Java code) is created for each ic@nttherefore in

each JMorvenThread containing a number of constraintsdtys@& and generate a valid

set of tuples.

Each JMorvenThread iterates through all of the constramthe container. For each

constraint an exhaustive list of all tuples for all quaestin the associated quantity spaces

1A IMorvenThread is a wrapper for a standard Java thread wdffelrs some housekeeping. This
includes keeping track of the number of threads runningeoeatly, utility methods for waiting on threads
to complete and timing mechanisms to determine how muchdinct thread takes to execute.
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is generated. Each tuple is then checked in turn to deterihiniss consistent with the
constraint. If the tuple is inconsistent it is discardedt i§ consistent it is then stored in

the output container to be tested by the pairwise filter.

A diagram of how the Tuple Filter is implemented is shown infey6.3.

Distribute Constraints

constraint,

Tuple filter parallel units
C = no. of Constraints

Wait for all

A

Tuple Filter

Figure 6.3: The Tuple Filter in parallel.

6.3.2 Parallel Pairwise Filter

The Pairwise Filter is used to ensure that all tuples resyliiom the Tuple Filter are

consistent across all constraints, since the tuple filter @@asons per-constraint. This is
achieved by testing each pair of adjacent constraints (twstcaints are said to be adja-
cent if they each share a common derivative of a variableyeetor element). Each valid
pairing then iterates through all possible tuples and dilscthose that are not common
to both constraints resulting in a list of tuples numericalljual to or less than the input.

An example of the reasoning behind the pairwise filter fooW we have constraints C1
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and C2 from the single tank example as shown in Appendix Ath tuples as shown:

CL:[V' ¢; q,]= [p-small p-large p-medium
C2:[V ¢q,] =[p-medium p-medium

The only vector element common to both of these constrasnjs which is consistent
for the given valuesg-mediunin both constraints) therefore the pairwise filter would not

discard this pair, however if we had:

CL:[V’ ¢; ¢o]= [p-small p-large p-mediun
C2:[V ¢q,] =[p-large p-largé

then the pair would be discarded since the valug,ofould be inconsistent across the

pair of constraints.

Each individual pair of constraints can be filtered indepenly of all others since there
are no data dependencies between them, therefore allohenggirwise filter to be eas-
ily parallelised. JMorven implements this pairwise filtgr first creating an exhaustive
list of all possible pairs of constraints for the model anchoging those that are not ad-
jacent. JMorven then creates a number of containers equhétoumber of execution
units available. Each adjacent pair of constraints is thetmnibluted equally amongst these
containers and a new JMorvenThread is created for eachisent&ach JMorvenThread
then iterates through all pairs of constraints. For eachcadijt pair, all of the consistent
tuples are tested to ensure they are consistent with bositreamts. If a tuple is found that
is inconsistent then this tuple is removed from the contaiAdter all tuples have been
checked, the container contains only tuples that are vailid that pair of constraints

which is then passed to the state generator.
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A diagram of the data dependency of the pairwise filter is shioviigure 6.4.

R . Pair-wise Filter ...

Generate pairs of
Adjacent constraints

V' N

Pair-wise filter parallel units
n = no. of pairs of adjacent constraints

2
n<c’ —c

Figure 6.4: The Pairwise Filter in parallel.

6.3.3 Parallel State Generator

The State-generator is the most computationally expemssage of Qualitative Analysis,
especially when creating an envisionment of all possilkdéest This is the process of
iterating through each set of tuples and creating uniquestar every combination of

variables’ derivatives possible.

The State Generator is implemented in JMorven by iteratingugh each constraint in
turn, in a breadth-first manner, starting with an empty ahistate. Each constraint has
an associated number of tuples which are consistent withhiése tuples are distributed
equally among a number of containers equal to the numberesfution units available.
Each tuple container also has an associated states contaash states container has a

copy of the same contents; the partially defined consistatés up to this point. Each
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pair of containers is then used to generate a new set of pstetas for the set of tuples in
the next constraint. Each pair of containers are used a$ iopgbhe JMorvenThread and
the output is a set of valid partial states for the next iteratThe following pseudo-code

outlines the process:

initialise input state-containers with enpty initial states
iterate ¢ through all constraints
split tuples in constraint into tuple-containers
iterate t through tuple-containers
create JMorvenThread with input containers to produce output state-containers

copy output state-containers into new input state-containers for next iteration

Each JMorvenThread in the State Generator is implement&etaying through each set
of tuples in the tuple-container and each partial stateerstate-container. If the state is
consistent with the tuple then the tuple is set and addecetoulkput state-container. The

following pseudo-code describes the process:

iterate through t tuples in tuple-container
iterate through s states in state-container
if tuple t is consistent with state s

create copy of state s and set tuple t - store in output state-container

This allows the state-generation to run in parallel as shioviigure 6.5.

6.3.4 Parallel Transition Analysis

The Transition Analysis (TA) phase involves determiningvhgqualitative states transit
between one another from one point in time to another. Théseved by following

a set of transition rules as shown in figure 6.6 or by numdyigategrating variables to
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Go through each
constraint in turn

Set tuplesin
partial states

lterate if more
constraints

-

State GeneratOr s ........

Figure 6.5: The State Generator in parallel.

find successor values. The numerical integration tramsiteoe discussed in more detalil

in chapter 7.

The transition rules are shown for the purely qualitativargity space for simplicity
however the idea applies to fuzzy quantities too. For thentjii@s adjacent to zero in a
fuzzy quantity space, the diagram above still applies,ievge have variabled = [p-small

n-smal] then, from the diagram, it can transit to eitheefo n-small [p-small zer$, or

[+ ] [+ 0] [+ 4]
[0 -] Y| [0 4]
[- -] - 0 -+

Figure 6.6: The Transition Rules in JMorven.
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[zero zerd. In addition to this the derivative may change to any adjacpiantity i.e.
zeroor n-mediumwhich gives additional variable values gf-fmall n-mediurnor [zero

n-mediunp A more general set of rules is given below:

e Quantities can only transit to adjacent quantities in thangjity space due to the
continuity constraint (quantities can also stay as theyuatess the quantity has

zero width and has a non-zero derivative).

e If there is derivative information available this dictati® direction of the tran-
sition, i.e. if the derivative is greater than zero then th@rgity must transit to
the next larger quantity in the quantity space (similarlyrfegative derivatives and

smaller quantities).

¢ If the quantity has zero width then any derivative changetraise trigger a change
in the quantity, e.g. if we have the quantitgewhich represents exactly the number
one as a fuzzy quantity and we have varialtle [one zerpthen transitions togne

n-smal] and [one n-positivewould be invalid since the quantignedid not change.

The transition analysis phase takes each qualitative atateapplies the transition rules
to each variable within the state and generates a list ofilplessuccessor states. These
successor states are only consistent with the transities and must be filtered through

the qualitative analysis stage to check that they are cdemiwith the constraints too.

Since the transition rules are applied to each state indkgmely, the TA phase can be
easily parallelised. Each execution unitis given a numbstates to analyse and generate
successor states. The states are distributed naivelynaggthat each execution unit has

the same processor power available.

A diagram of the TA implementation is shown below in figure.6.7
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Transition Generator parallel units

X = no. of threads available

Input = Collection of States

Output = Collection of States with transitions

Wait for all

A 4

Figure 6.7: The JMorven Transition Analysis Phase in Palall
S; denotes a State without transitions &ifl is a State with transitions calculated.

6.3.5 Complete Parallel Implementation

In this chapter, each stage of the JMorven qualitative rdagengine has been discussed,
and a description given of how it has been implemented inllghr&igure 6.8 shows a

complete diagram of JMorven implemented in parallel.

6.4 Auxiliary Variables

Models in JMorven are defined using a set of qualitative thffiial equations. These
equations are split into two or three place constraints ar internally. This restriction
is to enable the tuple filter to execute efficiently and aldoved ease of parsing. If a
QDE requires more than one of these two or three place camstreemporary variables
need to be used. JMorven incorporates auxiliary varialfests predecessor, Morven.

However there are several problems implementing auxilranables in JMorven since it
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reasons non-constructively. This is discussed in moreldetiw.

6.4.1 Non-constructive Auxiliary Variables

Auxiliary variables are used temporarily to store the valoka JMorven variable across
constraints. Auxiliary variables are implemented in JMomas a fuzzy four tuple which
is initially unset, then when constrained this intervalaes $Vithin a constraint the union
of all possible temporary values is used for the auxiliamyalae to ensure that all tuples
remain valid using this temporary value. Across differemstraints the intersection of
temporary values is taken which is effectively the same agptirwise filter on normal

variables. The intersection of values is taken to ensuiteathtemporary values are con-
sistent with the whole model. For example (using crisp gtiastto keep the example

simple), if these two constraints are part of a model

T=AxB

D=C+T

whereA is p — small = [0.5 0.75] and B can be eithes — medium = [1.0 1.5] or

p — large = [1.5 2] then the auxiliary variablg” can take the values ¢6.5 1.125]

or [0.75 1.5]. Since this is within a single constraint then the union @t values is
taken thereford” = [0.5 1.5]. If we then evaluated the second constraint and found that
T = [0.75 1.667] then the intersection of both valuesBfwould be taken resulting in

T =[0.75 1.5]. Notice that this does not necessarily match any quantitiyerquantity

space.

Since JMorven reasons non-constructively there is no reougnt for ordering equations
thus JMorven must be able to handle unordered auxiliaryakbes or loops. Before ex-
ecution, JMorven loads the model file and parses the contgrdhen it finds all of the

dependencies of each auxiliary variable in an attempt teraleem automatically to avoid
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iteration. If a cycle is detected, i.e. there is an algebi@ip in the model constraints,
then iteration will have to take place. Iteration of the dosists occurs because narrow-
ing the interval of one auxiliary variable may have an eff@etanother if there is a loop
or the constraints are unordered. This iteration continmésthere is no change in any of
the auxiliary variables concerned (typically only thresrdtions are required, one which
narrows the maximum side of the fuzzy tuple, one which nasrtve minimum and a

final one to ensure the changes don’t have any further effect)

6.5 Summary

In this chapter, the motivations for JMorven were discussad how JMorven was de-
signed and implemented. The chapter details the quabtaspects of JMorven including
the parallel architecture created for increasing effiogjamben executed in environments
with multiple processors available (Chapter 7 presentsémai-quantitative and quanti-
tative contributions of JMorven). These parallelisatians discussed with the reasoning
behind the design of each major stage and how it is implerdent@Morven. The filters
(tuple and pair-wise) and transition generator are classatnples of data parallelisation
in that the data to be filtered can be split easily for use imea@cution unit. The state
generator is a more complex stage and required an algoridnatiglisation to make best
use of available resources. The result is that all of theestagJMorven have been par-
allelised resulting in JMorven being the first fully parékpialitative reasoning system
available. In addition to this, JMorven uses non-consivaalgorithms which make it
more general since they have the ability to cope with systegerdless of whether they

are causally ordered or contain algebraic loops.



Chapter 7

Non-constructive Fuzzy Interval

Simulation

As discussed in chapter 5, there are a number of simulatrategies already available
yet none have achieved good results when using non-cotig&wadgorithms. In this

chapter, a non-constructive synchronous simulator, asgbahe JMorven framework,

is presented and discussed. This simulator has severatatiffalgorithms for tackling
the problem. What results is a simulator that can reason fwtlly numbers in a non-
constructive manner and which does not suffer from unnecgsaterval divergence.
SyNCSim (discussed in Chapter 4.4) showed that it is passtbtonduct synchronous
simulation using non-constructive algorithms. JMorveesuthis knowledge to apply

similar techniques to semi-quantitative and quantitetiveulation.

7.1 Twin Interval Fuzzy Numbers

Fuzzy numbers in JMorven are represented by fuzzy fouetupHowever to aid the

calculations in the synchronous simulation environmeist llas been modified to a new
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representation termebvin Interval Fuzzy Numberd-uzzy numbers are represented by
two numerical intervals: The inner interval is defined frem b] and the outer interval
from[a—a b+ 3]. Sincea and( are zero or positive then the inner range is guaranteed

to be a subset of the outer range, from Moore (Moore, 1966):
AC B — f(A) C f(B)

for intervals A and B. This representation can be used to specify a real intefval i
and  are zero, i.e. both ranges are equal. Also if the interval® lz&ro width, this
representation can also be used to represent a real nunibgmwarth noting that this
could be extended to represent more complex fuzzy numbeesewdach interval could

be the result of taking the-cut with different values fou.

7.2 Updated Interval Arithmetic

There are several different definitions for interval arigtio in the literature. Table 7.1
is an amalgam of these with the addition of a flag to deternfitigel operands refer to
the same interval. One point to note about this table overubed in existing qualitative
reasoning engines is that this table defines the arithmegepties for operations whose
operands may span zero which is more important for intemaalisition than qualitative

simulation since the time-steps are generally far smalldre result of this is a more

complex table however implementation-wise it does notadase computation time.

Qualitative trigonometric operations (Liu and Coghill,0B8a; Coghill et al., 2005) have
been included in JMorven. However, JMorven extends theitqtiae trigonometry by

adding the ability to calculate the result of trigonometjzerations on intervals. This
is made difficult in that trigonometric functions are nonsmtonic and therefore the ex-
treme points are not sufficient to calculate the real re3ilile process below outlines how

the trigonometric intervdl:  d] is calculated in JIMorven:
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Let: m=la b,n=][c d
Operation Result Conditions
-n d (] alln
1 s c,d>00rc,d<0
[—o0 0] c<0andd >0
m+n a+c¢ b+d] allm,n
m—n [a—d b—(] m#n
0 0] m=mn
mxmn lac  bd] m=nand(c,d >00rc,d <0)
[0 bd] m =nandc < 0andd > 0
lac  bd] m # n anda,c > 0
lbe  ad] m # nanda > 0andd < 0
[be  bd] m # nanda > 0 andc < 0 andd > 0
lad  bc] m # nandb < 0 andc > 0
bd  ac] m # nandb < 0andd < 0
lad  ac] m # nandb < 0 ande < 0 andd > 0
lad  bd] m # nanda < 0andb > 0 andc > 0
lbe  ac] m # nanda < 0andb > 0 andd < 0
[min(ad,bc) maz(ac,bd)] m #nanda < 0andb > 0andc < 0andd >0
o 1 1] m=n
m X % m#n

Table 7.1: Interval Arithmetic Operations as Defined in J&éor
m # n denotes that the intervals do not correspond to the sama@nvhereas, = n
indicates that the intervals do correspond to the samevaiter, c > 0 indicates that both
intervals are positive whereasd < 0 dictates that both intervals are negatives 0 and
d > 0 (as well asz < 0 andb > 0) governs that the interval spans zero. It is possible to
definem x n for when both intervals span zero however it has been lefirotltis table
for simplicity.

if (d—c)>2m then return [min(fiig) maz(firig)l
determ ne result of f,,(c d]) — [lo hi]
if lo>hi then swap lo and hi
find nearest quadrant <lo using lastQuad=c—(c mod %)
set nextQuad = lastQuad
whi |l e nextQuad < d
update [lo hi] With f,(nertQuad)
i ncrement nextQuad by Z

2

return [lo hi]
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Having a fully correct interval arithmetic definition is impgant to reduce the number
of spurious behaviours generated. Some simulators use@ inéérval arithmetic based
on merely the extreme points or assume that intervals dopaot zero. In many of these
cases not all values may be included in the calculated ezt in some cases extraneous
width of intervals may be calculated particularly in theeagen operations are carried

out on the same variable, e.d.x A.

7.3 Integration Techniques

As discussed in section 5.1 there are many different tedesigised to approximate the
integration process for simulation. They are summarisddvb&vith respect to non-

constructive simulation.

e Euler Integration is the simplest form of approximate im&ign. It has the benefit
of being simple and very efficient however it suffers frongkerrors even when
very small time-steps are used. It is used in existing syst&nce often only one

derivative is known for each variable.

e Runge-Kutta methods find an estimate of the derivatives atessive time-steps
and refine them using the system of equations to achieve nuorgate results.
The second order and fourth order variants are the most conamo provide an
increased level of accuracy when used in simulation. Howetiese cannot be
used non-constructively since they require interactiamben the variables of the

model in a similar way to Moore’s interacting approach (Madr966).

e Taylor Series uses as much derivative information as plesgitless a threshold is
defined and reached. This allows Taylor Series to be moraaecior variables of

an order greater than two (Euler Integration is the equintadé first order Taylor
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Series). Since JMorven reasons with multiple derivatitigs, technique is partic-
ularly suitable. The more derivatives there are specifiethénmodel results in a
more accurate simulation. It is also suited toward non-tansve simulation since

each variable can be integrated individually.

It is clear that Taylor Series offers the best method forgragon for use in JIMorven. To
integrate using Taylor Series, each variable is considieraarn and each derivative can
be calculated with the exception of the last derivative sitiere is no further derivative
information available. This last derivative of a variabdeleéft undefined although the
model constraints should constrain it. A Taylor Series fneel as:

f(x) = f(a)+ f'(a)(x —a) + L@(x —a)*+ ..+ fn—m)(x —a)"+ ...

21 n!

where f(z) is the estimated value of the function after a certain titeg-.s The current
value of the system variable is denoted at . JMorven integrates a variable vector as

shown in pseudo-code below:

set n = nunber of derivatives in variable V,
iterate z from0O to n—1
set Ps = P, fromderiv z of Variable V;

iterate y fromz+1to n

stly—=)
(y—=)!

calculate f=
increment P.s by fx P
set P45 as deriv z of Variable Vi .4

return Vg
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7.4 Non-Constructive Interval Simulation

Since JMorven uses a Twin Interval representation for FUNagnbers, it can be sum-
marised as interval simulation since simulating in the yjudamain is merely an exten-
sion of interval simulation in this way. To simulate non-stmctively a model and a
partially-defined initial state are required. The more @iea available in the initial state
results in a more precise simulation. The initial state & fanalysed to ensure that it is
consistent before proceeding with the simulation. The &itan process is an iterative
one which starts from time, until ¢.,,4 in steps ofét. The first part of the process is to
integrate each variable in turn as described in section @r&e the integration is com-
plete, the constraints are used to determine the valued ohadéfined derivatives from
the integration process. This results in a state which iy &pecified although it may
contain extraneous width in the intervals. To narrow therwvdls, the constraints are used
to narrow the intervals of all possible values repeatedijf oo more changes occur or a
threshold is reached. During this analysis the new updatkabs of all variables are used
which help to narrow other variables within constraints.e@echnique that is also used

is Inverse Constraint Operations. This is described below.

7.4.1 Inverse Constraint Operations

Inverse Constraint Operations is the process of applyiegiritierse, or inverses, of a
constraint on a tuple. The aim is to discard more inconsistelnes and minimise the
width of all intervals within the constraint resulting inWer spurious behaviours being
generated. For most constraints there is at least one asstdnverse constraint which
is arithmetically inverse. For example, the addition caaist has two inverse constraints
defined as shown below:

A=B+C
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has the inverse constraints:

It may not be sufficient to merely calculate the interval fobAsed on the values of B
and C since the calculated result may help in the reductidheinterval width of the
other variables. Applying the inverse constraints helghice the interval width of all
variables within the constraint, not just the left hand sideable. It also reduces the
number of times the model constraints need to be loopeddefmchanges are apparent
(as described in chapter 6.4.1). If a constraint does nat havinverse then this process

is skipped for that constraint.

The following example shows how using the inverse condisdielp reduce more than
just the interval of the left hand variables within a consiralf the constraint below is
considered

A=B+C

and have initial values ol = [5 6], B = [3 4], andC = [2.5 3.5] which are
calculated from the integration step. Applying the basiestraint arithmetic narrowd

as shown belowB andC are used to determine what the consistent range of values for
could be.

5.5 7.5]=[3 4]+[25 3.5

howeverA = [5 6] from integration therefore taking the intersection of tive ranges

narrowsA to becomed = [5.5 6]

To narrow the rest of the variables the inverse constrahdsld be used. The first one is

taken:



7.4. Non-Constructive Interval Simulation 106

then the interval for B can be narrowed as shown:

2 35]=[55 6]—[25 3.

but from integration,B = [3 4]. Taking the intersection of the intervals gives =

3 3.5

Finally, using the last inverse constraint:

C=A-B

the interval for C may also be narrowed as shown:

2 3]=[55 6]—[3 3.5

butC = [2.5 3.5 from integration therefore taking the intersection= [2.5 3]

This now results in all variables being narrowed as much asipke as shown:

25 3]=[55 6]—[3 3.

After this process the intervals fot, B andC are narrowed as much as possible when
reasoning over this constraint alone. However, these egdatiues may result in further
narrowing in other constraints; hence the process is regaaitil no more changes are
made in the whole model or a threshold is reached. Due to tihhewmiag of intervals using

this Inverse Constraint Operations, not much looping ofthele model is required.

This process could be parallelised since each inversereamstan be carried out inde-

pendantly of the others however the overhead of creatingsgndhronising threads for
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such a small process would mean that the benefits would bé ahhaist.

7.5 Fuzzy Interval Simulation

This section describes the different simulation strategsed in JMorven for simulating

fuzzy numbers as real intervals.

7.5.1 Basic Interval Simulation

The most basic mode of simulation in JMorven is a straightéod interval simulation
engine. This mode uses the interval arithmetic defined ile fald, the Inverse Constraint
Operations discussed in section 7.4.1 artth order Taylor Series is used to integrate cur-
rent values to predict the successor values (whasequal to the number of derivatives

defined for the variable).

The initial state is defined for time= 0. The user is asked for a time-stepdfand a

total time to simulate ovet,,; therefore there will be

ttot

ot

num —

distinct time steps thereforeum distinct states created during the process of simulation.
At each time-step all derivatives of all variables are setrtinitial range equal tpo  —

oo] and stored in the repository. Once the integration phasedrapleted, all derivatives
are set in the repository with the following trivial processttingminimise to false (this

is the process of taking the union of all values in the quialigeauxiliary variables):
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def f un: updatelnterval
par ans:
float: newMin newMax t
string: war
int: deriv
bool ean:  minimise
old = getinterval for deriv of wvar at t
i f minimise XOR (newMin > old.min)
oldmin = newMin
i f minimise XOR (newMax < old.max)

old max = newMax

When constraining and narrowing intervals using the Irev€enstraint Operations, the
above process is repeated but witlinimise set to true to ensure the intervals narrow
(this is the process of taking the intersection of the vahlfegualitative auxiliary vari-

ables).

Even with these extra measures to reduce spurious tragsxtdne intervals widen over
time. This interval divergence is observed more as theainitterval increases. The out-
put from this mode is complete but not sound, i.e. all of theest solutions are bounded

by the output intervals however spurious solutions areialdaded in the output.

7.5.2 Sub-Interval Simulation

Several methods were researched to find ways to decreasmtunbof interval diver-
gence for simulated trajectories. One method which wasddonbe successful was

Sub-Interval Simulation. In this process, each of the iraksrare divided inta: regularly
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spaced distinct sub-intervals that cover the whole origmarval. These intervals do
not overlap and if the union of all sub-intervals is taken dhiginal interval is restored.
This is guaranteed to bound all real solutions of the protdsmproved by Moore (Moore,
1966):

ACB— f(4) C f(B)

States are generated each having a unique combination sidilaiintervals. Each state
forms the initial state for a simulation to proceed usinghibsic interval simulation strat-
egy. Since JMorven reasons about fuzzy numbers, a strategiolbe devised to output

a fuzzy trajectory. For each variable, if the sub-intereabe simulated is completely

bounded by the intervak b] (wherea andb are the two parameters of the fuzzy four
tuple [a b alpha beta]) then the interval is considered as an inner range, otlsertvie
interval is considered as an outer range. These inner amd ariges are combined to

form the Twin-Interval fuzzy numbers as described in sectid..

The motivation for this technique was that the width of thgiahinterval has a direct
influence on the amount of divergence on simulated trajesomitial intervals which are
narrower suffer less divergence over time, hence havingthodevhich is guaranteed to
bound all solutions but diverge less is desired. As the stdnral widths tend to zero, the
output trajectories tend toward the real solution with noesessary interval divergence.
Hence, this method is complete but not sound however sossdsiachieved as the width
of the sub-intervals tend to zero. Figure 7.1 shows the sragtillator model defined in
section 5.1 simulated with an original interval and sevetdd-interval simulations with

the number of sub-intervals being increased.

The advantage of this process is clear, however there isisagwhntage to the approach.
Due to each interval being divided into sub-intervals theran exponential number of
initial states to simulate from. This seems to be a major lerakat first, however dur-

ing experimental testing one behaviour was observed tlolaices the number of states
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Figure 7.1: Undamped spring model simulated using the stédral method.

This shows the simulated trajectories of the spring modgllénde against time. The
interval shown in black is the spring model simulated ushmgliasic interval simulation
strategy. The interval shown in blue shows the same prob&nguhe sub-interval
method splitting the original interval into ten distinctsintervals. Similarly, the green
interval uses 100 sub-intervals and finally the red intesirmulates with 1000
sub-intervals.

greatly. The observation is that not all initial states aresistent once the original inter-
vals are split. This reduces the number of simulations tadeewged making this process
more feasible than originally thought. One other methoddoréase execution time is
to take advantage of the parallel framework of JMorven. &ieach initial state can be
simulated individually, it is trivial to make this methodridit from parallelisations. The
only interaction between execution units is the updatinmtfrvals after integrating and
constraining occurs which occupies a very small fractiothef whole simulation pro-

cess therefore close to linear speed-up is possible. Théges the parallelisations are

discussed in more detail in chapter 8.5.4.
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7.5.3 Monte-Carlo Interval Simulation

Another method to simulate intervals is proposed using d@drlo methods (Rubin-
stein, 1981). For each interval a number of sub-intervadsclosen at random with a
very small initial width. Each sub-interval is then simedtindividually and the results
of each simulation are used to update a central simulatository containing the union
of all fuzzy intervals for all variables. The motivation leti this is that due to the very
small initial intervals the simulated trajectories will tneuffer from much divergence.
Also, the random intervals should show more of the real gmistquicker than the sub-
interval method. The number of iterations can be set to akimle, however the process

can be stopped at any time if the desired output is met.

Monte-Carlo techniques have been criticised for being slodmissing combinations of
inputs (Kahaner et al., 1989). JMorven addresses thesesis8tstly, since each initial
state can be simulated individually as before, paralletiaa can be used to speed up the
process dramatically. The problem with missing combimegics less of a problem in

JMorven since each simulation reasons about an intervé.hBs two benefits:

e Since intervals are used, it is more likely to cover the whaslginal interval as a

finite number of intervals can be used to recreate the interva

e Due to interval calculations diverging, the output trapegtbounds more than just
the real solution of the initial intervals, hence the migstombinations are likely

to be bounded by these extraneous inclusions.

Theoretically the Monte-Carlo Interval Simulation methisddomplete as the number of
iterations tends toward infinity. However it is not soundrae ¢ is still a degree of interval

divergence apparent due to each iteration having an imtidval width greater than zero.
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7.6 Point simulation

Point simulation is defined in JIMorven as simulating withiaiérvals having zero width,
i.e. real numbers. These points are simulated preciselttentrajectory remains with
zero width over all time. Point simulation itself can thenef be thought of as a traditional
numerical simulation technique and offers the same adgastand disadvantages. The
main advantage is that a dynamic system can be simulateég@igefor the precisely
known initial state. The disadvantage is that this methodelicannot reason with any
imprecision. This method can be used to make use of its aggardnd overcome the
disadvantage by approximating an interval as a group otgoirhe following subsections

discuss several methods in which this is implemented.

7.6.1 Extreme Point Simulation

The Extreme Point Simulation method uses the Point Sinaxiatiethod to simulate from
a number of states. The intervals in the initial state arel tisereate two points, one at

each extreme of the interval.

The motivation behind this method is that there is no intetweergence in each of the
simulations hence the final output should have no divergefaeng the extreme points
of each interval gives an approximate range of possibleagalthilst maintaining an effi-

cient method.

This method is sound but incomplete in that the solution ébcontains no spurious so-
lutions but it does not cover every possible solution. A rodttvhich improves upon the

completeness is proposed in the next section.
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7.6.2 Regular-Spaced Point Simulation

As with the sub-interval method, the Regular-Spaced Pomtfation method takes each
interval in the initial state and splits it into a number odtsls. These states contain a

number of points regularly spaced which approximates ttexval.

The motivation behind this is that the point method guameste unnecessary divergence
and using a set of points for each interval should cover mb#teopossibilities for the

final solution.

As the number of points increases the final solution tendandwhe real solution, hence
this method is theoretically sound and complete as the nuofloints tends to infinity.
This is due to each point being infinitesimally close to thighlouring point so that no
values are missed out. Since points are being simulatee, theo initial interval width

therefore no unnecessary divergence occurs.

As with the sub-interval method, this method is exponentidhe number of intervals
however it also has the benefit that not every state will basistent and it can also benefit

from parallelisations as shown in 8.5.4.

7.6.3 Monte-Carlo Point Simulation

The final method of simulation in JMorven uses Monte-Carlohods to simulate a num-
ber of points from the initial state intervals. Each intéigdaken and a number of points
are chosen at random within the bounds of the interval. E&th s simulated using the

Point Simulation approach.

The motivation behind this method was to combine the adgastaf all other methods
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of simulation in JMorven. Using points guarantees that tet®n is sound and us-
ing Monte-Carlo methods makes the solution tend to compéeste more efficiently than
Regular-Spaced Point Simulation. This method can also kedlglssed to benefit from

parallel machines as shown in 8.5.4.

7.7 Parallel Simulation

The simulation process of a single point or interval can lydexdout in a small amount
of time. The extended methods described above use multigiarices of this simulation
method hence run slower; therefore some method is requirepded up the process.
Since each instance can be executed independently it catebeted in its own parallel
unit. All of the above methods (apart from basic interval ismion) can benefit from
parallelisations. A number of containers are created etqutle number of execution
units available and each initial state is distributed elguahong these containers. Each
container is then executed in its own execution unit and gisirepository of intervals is

updated from the output of each simulation.

7.8 Summary

Simulation of intervals is not a trivial process especialtyen required to deal with alge-
braic loops. JMorven defines a number of non-constructivelsition approaches which

are summarised in table 7.2. The performance of each of thesscussed in chapter 8.5
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Approach| Sound? Complete? Comments |
Basic Interval N Y Rapid interval divergence occurs
Sub-Interval| Y* Y Less divergence but computationally
expensive
Monte-Carlo Interval N Y ** Still suffers from divergence
Extreme Point| Y N No divergence but doesn't cover all
real solutions
Regular-Spaced Point Y Y ** No divergence, close to covering
all real solutions but slow
Monte-Carlo Poinff Y Y ** No divergence, close to covering
all real solutions most efficiently

Table 7.2: Summary of Simulation Approaches used in JMorven
* Soundness is achieved as the interval width tends to zer@s.the number of intervals
tend toward infinity.
** Monte-Carlo methods achieve completeness as the numberations tend toward
infinity. The Regular-Spaced method achieves this as théeuof points tend toward
infinity.
In practice, tending toward infinity is not required; mertdnding toward the resolution
of the floating point representation is required althougéwould still result in too
many iterations to complete in a reasonable amount of time.



Chapter 8

Results

The JMorven framework has been described in chapters 6 ahdtfiis chapter several
experiments have been undertaken using the JMorven frarkeéwoest the hypotheses

made including:

e The use of parallel algorithms to speed-up all stages ofigi@t

e The use of auxiliary variables in a non-constructive envinent.

e The use ofi-th Taylor Series for a better approximation to integration

e Using several techniques to simulate fuzzy intervals.

¢ Displaying asymptotically sound and complete simulatibfumzy intervals.

e Carrying out semi-quantitative and quantitative simolasi using a qualitative

model.

e The ability to simulate on the spectrum from fully qualit&tio fully quantitative.

The experiments conducted to test these hypotheses ara slsbow and the reasoning

behind them:
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¢ a verification test for the qualitative aspects of JMorven.

e a model with an algebraic loop simulated to show JMorven eaisaon with alge-

braic loops.
e speed-up benefits of the parallelisations in all qualitasitages.

e more accurate non-constructive integration usinth order Taylor Series and

demonstrating the ability to simulate quantitatively framqualitative model.

e non-constructive numerical simulation methods for semasgitative and quantita-
tive models and showing that one method is asymptoticalyndand complete.
This experiment also shows JMorven’s ability to use aumilizariables within a

non-constructive environment.
e a model simulated on the spectrum from fully qualitativeulhyfquantitative.

e speed-up benefits of numerical simulations.

8.1 Qualitative Experiments

Since JMorven is capable of reasoning in a fully qualitathanner, it is relevant to carry
out a basic experiment to ensure that the output is as expedtie respect to its prede-
cessors FuSim (Shen, 1991) and Morven (Coghill, 1996). TapeJMorven succeeds
Morven in that the underlying algorithms are implemente@ inon-constructive man-
ner which allows JMorven to reason with general models aigas of whether they are
causally ordered or contain algebraic loops. Constru¢debniques were used in Mor-
ven as they were thought to generate fewer spurious belraviowever this was shown
not to be the case (Coghill, 1996) as the output from a cocistriand non-constructive

algorithm are identical (Coghill and Chantler, 1999).

JMorven adds two main additional features which did notteatisll in its predecessors.
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The first being a parallel algorithm which allows JMorven édxecuted in environments
where multiple execution units are available. This noveltdee speeds up execution
greatly therefore allowing more complex model behavioarsd generated in less time.
Another addition to JMorven is a non-constructive numeésagaulation algorithm which
can provide semi-quantitative and fully quantitative aipehaviours (this stage can also
be carried out in parallel). The inclusion of such a simolaalgorithm allows JMorven to
simulate output behaviours as accurately as possible With the available information.
This ranges from imprecise variable and parameter valueg fiszzy numbers to exact

numerical simulations using points.

8.1.1 Envisionments

To verify the validity of the pure qualitative aspect of JMen, the coupled tanks system

is used. This is shown diagrammatically in figure 8.1

|l
J q02
Figure 8.1: Coupled tanks model
showing two tanks of water with heights, ., and their differencé ;. One

inflow tap ¢;; and one outflow plug,, determine the flow in and out of the
tanks and the cross-floyy describes the flow between them.
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and is described by equations below (the model is also showklorven format in Ap-
pendix A.2):

Qo2 = M (hy)
o = M"(hi2)
his = hy — ho
My =qn —
hy = Gz — o2

The coupled tanks model was used to generate a total enwvisittrand complete envi-
sionment holding the exogenous variable= [+ 0]. The total envisionment produces
188 states and 19941 transitions. The complete envisiohrasults in a graph with 28

states with 71 transitions between them, and one equifibstate as shown:

hi=[+ 0 0
hy=[+ 0 0
h12:[0 0]

which is the expected result. The graph and state reposaterghown in Appendix B.1
and Appendix C.2 respectively. This output has been cordparéhe output of Morven
and verified as correct. Although this was a trivial expeniie carry out it was necessary

to ensure the results of the JIMorven qualitative reason&hmaa that of its predecessor.
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8.1.2 Simulation

The verification of the qualitative simulation in IMorvensmasted using a simple mass

on a spring system. This model is described by the followopgagion:

2 =F—mx

wherez” is the acceleration of the mass x is the displacement of the mass from its
equilibrium position and” is the Force on the mass. The JMorven model can be found in
Appendix A.3. Figure 8.2 shows the directed graph within dha of the output of this
model when using the signs quantity space. From the graphcigéar to see that some
sort of cyclic behaviour is apparent. Upon analysis of tlagestepository (see Appendix
C.1) it can be seen that this is indeed the oscillatory behaexpected of the mass on a

spring.

[UID: e-5-e-5
Mext Nodes: 1
|g=5-e=5

|Prew Nodes: 1
|l e

3tate UID: e-5-e-5
pl: fzZer , zer ; zer})
{d: {zer , zer}

®2: {ger , Ber , zZer}
;F: lzer , zer}

lsuccessor §rares:

| B=b-e-h
|Predecessor States:
e-5-g-5

-1p-5

Figure 8.2: Mass on a Spring Simulation Graph
Nodes represent states within the state repository andetigmte transitions
between states. Edges are directed from thick to thin tessmt the direction
of the transition. Self transitions are not shown on the lgrde node shown
in red was the one chosen for the initial state.
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8.2 Algebraic Loops

JMorven uses non-constructive algorithms which have tinefiteof being able to reason
with algebraic loops. This experiment uses a model of artredatcircuit defined by the
equations in section 2.4.1 and the JMorven model can be fouaqgpendix A.4. JMorven
loops round the constraints until all intervals are narras much as possible as shown
in the worked example in section 2.4.2. This example was tséest JIMorven and the
following output was observed:

Starting sinulation..
Before narrowi ng and constraining the initial state:
Variable: u3
Derivative: O Initial:u3:0:Set (0.0, 100000.0, 0.0, 0.0)
After narrowi ng and constraining the initial state

Variable: u3

Derivative: 0 u3:0:0.0:Set (50.0, 50.0, 0.0, 0.0)

which is exactly as expected. To test handling algebraigdaath intervals the following

initial state was given to JMorven:
R1=1[1990 2010]

R3 = [19500 20500]
U= 1[99 101]

iy = [0.014 0.016]
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The output from JMorven is show below:

Starting sinulation...
Before narrowi ng and constraining the initial state
Variable: u3

Derivative: O Initial:u3:0:Set (0.0, 100000.0, 0.0, 0.0)

After narrowi ng and constraining the initial state
Variable: u3

Derivative: 0 u3:0:0.0:Set (59.900314 , 67.32529 , 0.0, 0.0)

JMorven calculated the value of to be[59.900314 67.32529] which can be verified
by working through the equations by hand. These simple séstw that JMorven works

non-constructively and can reason with algebraic loops.

8.3 Analysis of Parallelisation Benefits

One of the major contributions of the JMorven framework iattof the parallel algo-
rithms for all major stages of qualitative analysis. As dssed in chapter 3, the optimal

performance of a parallel algorithm is linear and when tlieiehcy

where S, is the speed-up observed when runningroexecution units. Platzner and
Rinner (Platzner et al., 1997) report an average speefi-up2 which is far from optimal.
This section discusses the results of the parallelisatiattsn JMorven and how they

compare to the findings of Platzner and Rinner.
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8.3.1 Tuple Filter

The times were recorded using the average of five executibtieedull coupled tanks
system with 21 quantities in the quantity spaces and 2 inpwisfland 2 output flows as

shown in figure 8.3.

N ||
Yo1 J Y02

Figure 8.3: Full Coupled tanks model
showing two tanks of water with heights, h, and their differencé». Two inflow taps
i1, ¢i2 and two outflow plugg,:, ¢,2 determine the flow in and out of the tanks and the
cross-flowg, describes the flow between them.

The Tuple Filter occupies approximately 5% of the runnimgetiof the qualitative anal-
ysis phase. Parallelisations aim to make it execute moreklyuwhen using multiple
execution units. The results achieved are summarised beltable 8.1. The benefits of
the parallelisations are not as much as initially thoughténeer due to the small amount
of time of execution of the tuple filter, the implementatioasanot optimised (the tuple
filter takes less than 5% of the running time of the QA phaseagmatoximaitely 1% of
the total running timwe). It can be seen from the table thetels a benefit from the par-

allelisations; the implementation could be optimised toie@ee closer to linear speed-up.

The method used to parallelise the tuple filter has a few daakdbin that the number of
execution units to be used is limited by the number of comgs @ the model. This means

that the maximum number of execution units to be utilisededels on the complexity



8.3. Analysis of Parallelisation Benefits 124

number of execution units,
1\2\3\4\5\6\7\8
Time Taken (s)| 4.744| 4.085| 3.600| 3.197| 2.693| 2.521| 2.336| 2.183
Speed-ups, 1.000| 1.161| 1.318| 1.484| 1.762| 1.882| 2.031| 2.173
Efficiency, F 1.000| 0.581| 0.493| 0.371| 0.352| 0.314| 0.290| 0.272

Table 8.1: Parallelisation Benefits of the JMorven TupléefFil

of the model. Also, in a worst-case scenario, there wouldrE®raore constraint than
number of execution units available, and all tuples areréitten exactly the same time
resulting in the tuple filter taking twice as long to execttart it would with just one less

constraint.

This limitation is not too great a problem since the tuplefitakes a very small amount of
time to complete especially for simple models with a smathber of constraints. As the
model grows in complexity, so does the number of constratherefore the maximum

number of usable execution units is also increased.

8.3.2 Pairwise Filter

The pairwise filter is the least computationally expenstages of the qualitative analysis
phase. The times were recorded using the average of five texesof the full coupled

tanks system with 21 quantities in the quantity spaces amp@tiflows and 2 output
flows. Due to the small execution time there is very little é@rfrom the parallelisations

as can be seen in table 8.2.

number of execution units,
1\2\3\4\5\6\7\8
Time Taken (s)| 0.646| 0.455| 0.382| 0.339| 0.356| 0.360| 0.374| 0.344
Speed-ups, 1.000| 1.420| 1.691| 1.906| 1.815| 1.794| 1.727| 1.878
Efficiency, F 1.000| 0.710| 0.564| 0.477| 0.363| 0.299| 0.247| 0.235

Table 8.2: Parallelisation Benefits of the JIMorven Painfiiter

If there areC' constraints in the model, then there will be at m@s$t- C possible pairings

of constraints to be filtered in the pairwise filter. This su$ffrom the same drawbacks as
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the tuple filter however there are more pairs to be executaa ¢onstraints in the tuple

filter so the limitations are not so apparent.

The results look positive for the first half of the table, @s# processors over 1 takes
around half the time to execute, however the benefits theegula This is due to the small
amount of time taken for this stage since there is not much vadoe done. The algorithm
could be optimised to allow for a greater benefit from the palisations but since the
state generator is by far the most expensive stage, mose efffibrt was concentrated on

it.

8.3.3 State Generator

The state generator in JMorven is the most computationatgnsive stage, occupying
approximately 95% of the running time of the QA phase theeethis is the most im-
portant stage for which to optimise parallelisations. Tinges were recorded using the
average of five executions of the coupled tanks system withadiifies in the quantity

spaces and 1 input flow and 1 output flow. The results are sursedan table 8.3.

number of execution units,
1 \ 2 \ 3 \ 4 \ 5 \ 6 \ 7 \ 8
Time Taken (s)| 41.452| 20.631| 14.689| 11.645| 9.524| 8.484| 8.214| 6.830
Speed-ups,, 1.000 | 1.999 | 2.822 | 3.560 | 4.352| 4.886| 5.047| 6.069
Efficiency, E 1.000 | 1.000 | 0.941 | 0.890 | 0.870| 0.814| 0.721| 0.759

Table 8.3: Parallelisation Benefits of the JMorven Stated&sor

It can be seen that there is a large performance increasetfi@marallelisations in the
state generator. Using eight execution units results inbmeiwed speed-up greater than
six times over the sequential version which is a huge ben€&he speed-up is close to
linear. However, there is a drop in efficiency which could be tb communication costs
from the master node to the child parallel units, although ot known how this could
be tested. There is another area where the parallel algorgmot fully utilised - for

the first few iterations of a simple model, there are not ehadugles to make use of the
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maximum number of execution units available, thereforethg&imum speed-up will not
be observed during these iterations. This limit is not appiafter the first few iterations
as all execution units can be used and hence optimal speednupe obtained from then
on. The machine on which tests were carried out is an eigleiggsmr Sun server running
Solaris 5.8. The threading model in this version of Solagiguite old and it is thought

that a newer version may show even greater benefits from tiaigdessations.

Since the state generator is the most computationally esxpestage in qualitative anal-
ysis; this means that even if only the state generator wepdeimented in parallel the
whole process would be speeded up greatly. There is no shreeubry used in this algo-
rithm for generating states therefore the algorithm wousd avork well in a distributed

computing environment.

8.3.4 Transition Analysis

The transition analysis phase was also parallelised. Bhissponsible for calculating
the transitions between states. Table 8.4 shows the redfulte parallelisations. The
model used was the coupled tanks model with nine quantii¢lsd quantity space for
each variable and one input and output, howeverttoeit was set to zero to obtain the
maximum number of transitions possible. There were 75®staith 13966 transitions

in this test.

number of execution units,
1\2\3\4\5\6\7\8
Time Taken (s)| 8.466| 4.598| 3.489| 2.750| 2.394| 2.170| 1.905| 1.677
Speed-upS, 1.000| 1.841| 2.426| 3.079| 3.536| 3.901| 4.444| 5.048
Efficiency, F 1.000| 0.921| 0.809| 0.770| 0.707| 0.650| 0.635| 0.631

Table 8.4: Parallelisation Benefits of the JMorven Traasifnalysis

The transition generation shows very good benefits from #nellelisations. This stage
occupies a lot of the overall execution time of an envisioningpically over 50% if

transitions are required.
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8.3.5 Qualitative Parallelisations Summary

The qualitative stages of JIMorven have been parallelisddranresults of each individual
stage have been presented above. For an envisionmentaviiittons calculated the QA
phase occupies just under 50% of the total runtime leavisigpjer 50% for the TA phase.
The QA phase is dominated by the State Generation whichdljpioccupies about 95%
of the runtime. The transition generation (the only stagédjpand state generation stages
together dominate the total runtime therefore these arstdges which are required to
show the greatest benefits from parallelisations. From ékalts, it is clear that these
two stages do benefit greatly from the parallelisations. Jia¢e generator shows the
biggest improvements; this is due to most optimisationadpeindertaken on this stage.
The transition generation suffers a little in that it doesdisplay as much of a speed-up
as the state generator. The tuple and pairwise filters hagedtheoretical algorithm for
parallel computation however are let down by the implem@nan JMorven. There are
still benefits from the parallelisations showing that it aspible to speed-up these stages
too, but since these stages do not occupy much of the totalmgrime they have not

been optimised like the transition and state generators.

8.4 n-th Order Taylor Series Integration

JMorven usesi-th order Taylor Series to integrate in a non-constructianner. The
following example shows the difference between using firdeo(Euler Integration) and
second order Taylor Series Expansions to simulate a simaés on an undamped spring

model. The model is described by the following equation:

!
2 =F —mx
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£ Simulation of model: spring-system-one-var

Simulation of model: spring-system-one-var
Simualtion Mode: Basic Interval Simulation
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Figure 8.4: Undamped spring model simulated using Eulegiation.
Quantitative simulation of the mass on a spring showingriiedtory of

£ simulation of model: springsystem

Simulation of model: spring-system
Simualtion Mode: Basic Interval Simulation
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Figure 8.5: Undamped spring model simulated using secaher diaylor Series.
Quantitative simulation of the mass on a spring showinghjedtory ofz

This qualitative model is given the quantitative initisdtg specifyinge = 1,2/ = 1, 2" =
—1. JMorven can simulate this quantitatively from the quatitie initial state with no
modification to the qualitative model. Figure 8.4 shows timeutated behaviour using
non-constructive Euler Integration. The model is undamgued has no external forces
therefore the amplitude of oscillations should remain tamshowever due to errors in
the integration approximations the amplitude is unstabteia increasing exponentially.
Figure 8.5 shows the same model but using a second orderarmtractive Taylor Series
to approximate the integration step. It can be seen thantipditade of oscillations remain
far more stable. From this simple experiment, it is cleat Wiaen using a higher order

integration estimate, it is possible to provide more adeusanulations.
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8.5 Fuzzy Interval Simulation

In addition to qualitative simulation, JMorven also presenframework for simulating at

a semi-quantitative level and fully quantitative level.effuzzy calculations are based on
using intervals to depict fuzzy numbers as detailed in @draptl. Setting these intervals
to have zero width results in a fully quantitative simulatid’he results of each method
and a brief discussion is presented below with a more inkdeistussion and conclusion

presented in chapter 9.

8.5.1 Simulation Methods Using Real Intervals

This section discusses the results of the simulation modékiorven that use real inter-
vals for simulating trajectories of models. The model usa@st out the semi-quantitative
simulations is simple mass on a spring. The model descnigm be found in Appendix
A.3. The model was simulated using the initial values:ef 1, 2’ = 1; these are precise
values with intervals of zero width hence JMorven carrietlaofully numerical simula-

tion to obtain the output graph as shown in figure 8.5.

8.5.1.1 Basic Interval Simulation

The mass on a spring was simulated with an initial state 8pegiz = [0.9,1.1,0.05, 0.05],
' = [1] and F' = [0] and the rest of the values remain unspecified. The basiosaiter
simulation output can be seen in figure 8.6. The simulatioh ke first ten seconds from
the initial state. It can be seen that even with a fairly meanput fuzzy interval quite a
lot of excessive widening occurs. This output is not veryfuisas it is not apparent that
any of the expected oscillations occur. This demonstraegtoblem with basic interval

simulation.
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Simulation of model: spring-system-one-var
Simualtion Mode: Basic Interval Simulation
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Figure 8.6: Basic Interval Simulation of Mass on a Spring
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Simulation of the mass on a spring showing the trajectory. athe blue line indicates
the simulated trajectory of the— « fuzzy parameter. The yellow line is tlagparameter,
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Simulation of model: spring-system-one-var
Simualtion Mode: Regular-Spaced Interval Simulation
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Figure 8.7: Sub-Interval Simulation of Mass on a Spring
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Simulation of the mass on a spring showing the trajectory w$ing 10 sub-intervals
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Simulation of model: spring-system-one-var
Simualtion Mode: Regular-Spaced Interval Simulation
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Figure 8.8: Sub-Interval Simulation of Mass on a Spring
Simulation of the mass on a spring showing the trajectory a$ing 100 sub-intervals

Simulation of model: spring-system-one-var
Simualtion Mode: Regular-Spaced Interval Simulation
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Figure 8.9: Sub-Interval Simulation of Mass on a Spring
Simulation of the mass on a spring showing the trajectory wing 1000 sub-intervals
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8.5.1.2 Regular-spaced Interval Simulation

One method that JMorven uses to simulate intervals moragaigds regular-spaced
interval simulations. The same inputs were used for thests s in section 8.5.1.1.
Figure 8.7 shows the output using 10 sub-intervals. It isrcte see that the interval
still diverges; however it does not widen as rapidly as widtsib interval simulation.
Figure 8.8 shows the output using 100 sub-intervals. It asden that now the interval
widens far less and some useful trajectory results can be sEgure 8.9 shows the
output with 1000 sub-intervals. From this set of outputsit be seen that as the number
of sub-intervals is increased the resulting interval gsffess from excessive widening.
Theoretically, as the number of sub-intervals approaatfesty the output trajectory will
approach the real solution since each interval will havenitg@simal width. The major
drawback with this method is that it takes a long time to ek®@since each sub-interval

needs to be simulated individually.

8.5.1.3 Monte-Carlo Interval Simulation

The best simulation method in IMorven that reasons withméadvals is the Monte-Carlo
Interval method. The results of the simulation with this hoet are shown in figure 8.10.
The advantages of this method are that the interval does &mwas rapidly as with
the sub-interval method even when using 1000 sub-intesiatse each iteration of the
Monte-Carlo method is defined as having a very small intamdih. Also the execution
time was far quicker as fewer iterations were required taiokthe output trajectory. The
disadvantages are that this method relies on random nuithieeedore there will be subtle
differences between simulations of the same model withdheesnput parameters. Also,
this method is not guaranteed to bound all possible solsiatthough it will approximate

the output solution very closely.
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Simulation of model: spring-system-one-var
Simualtion Mode: Monte Carlo Interval Simulation
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Figure 8.10: Monte-Carlo Interval Simulation of Mass on ailsp
Simulation of the mass on a spring showing the trajectory @$ing Monte-Carlo
methods

8.5.2 Simulation Methods by Approximating Intervals

This section discusses the results of the simulation madéMborven that approximate
intervals for simulating trajectories of models using grewf points. The model used to
test out the semi-quantitative simulations is the Van déroBaillator. This is described
by the following equation:

i=—P(®—1)i—Qu

The model description can be found in Appendix A.5. This nhodiéses auxiliary vari-
ables to ensure no unnecessary divergence of the inteakas place, hence these tests
also verify the ability of JMorven to use auxiliary variabl@ a non-constructive environ-

ment.

The experiment was simulated using the initial valuesof 1,2 = 1, P = 1 and
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@ = 1; these are precise values with intervals of zero width hdiMerven was used to
carry out a fully numerical simulation to obtain the outpraghs as shown in figures 8.11

and 8.12. The simulations are carried out for 40 secondsthftanitial state.

8.5.2.1 Extreme Points Simulation

There are some methods included in the JMorven frameworkntalate by approx-
imating intervals. The first one simulates the endpoints adtheinterval specified
in the initial state. The Van der Pol oscillator was simullaspecifyingz, 2’ =
(0.5, 1.5, 0.25, 0.25] andP,@ = [1] in the initial state with all remaining values
left unspecified. Figures 8.13 and 8.14 show the outputdi@jes of the model for and
2’ respectively. Using the extreme points method providesugipub with no widening of
the intervals but not all of the solutions are bound by theout However this method
does provide a very efficient approximation to the desirgguu The implementation of
this method takes the extreme points of the fuzzy intervilaas «) (b + 3)] therefore

the output is a single interval rather than fuzzy.

8.5.2.2 Regular-Spaced Point Simulation

The regular spaced point method is similar to the regulaceg interval method except
that points at regular spaces are used instead of reguleedatervals. This aims to
approximate the interval as a group of points so that theutwtll bound close to all
solutions but with no excessive widening of the output trgjey since points are being
simulated instead of intervals. Figures 8.15 and 8.16 shewtitput of the regular-spaced
point method using five points to approximate each inteiSaidce there are two intervals
in the initial state of the Van der Pol oscillator for this pkem there are 25 unique combi-
nations of points to simulate. The output provides a verydgoaectory with no widening

and the intervals appear relatively close to the expectégbuOn a close inspection it
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Simulation of model: VanDerPol-Oscillator
Simualtion Mode: Interval Simulation
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Figure 8.11: Numerical Simulation of Van der Pol Oscillator
Quantitative simulation of the Van der Pol oscillator shogvihe trajectory of:

Simulation of model: VanDerPol-Oscillator
Simualtion NMode: Interval Simulation

Figure 8.12: Numerical Simulation of Van der Pol Oscillator
Quantitative simulation of the Van der Pol oscillator shagvihe trajectory of’

Simulation of model: VanDerPol-Oscillator
Simualtion Mode: Extreme Points Simulation

Varahlevalues

Figure 8.13: Extreme Points Simulation of Van der Pol Ostol
Simulation of the Van der Pol oscillator showing the trapegtof = using the extreme
points method

Simulation of model: VanDerPol-Oscillator
Simualtion Mode: Extreme Points Simulation

time

Figure 8.14: Extreme Points Simulation of Van der Pol Ostol
Simulation of the Van der Pol oscillator showing the trapegtof 2’ using the extreme
points method
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Simulation of model: VanDerPol-Oscillator
Simualtion Mode: Regular-Spaced Point Simulation
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Figure 8.15: Regular-Spaced Points Simulation of Van défRaillator
Simulation of the Van der Pol oscillator showing the tragegtof = using the
regular-spaced points method with 5 points per intervaé Ji&llow line
indicates the simulated trajectory of the- o fuzzy parameter. The blue line is
thea parameter, red isand green i$ + .

Simulation of model: VanDerPol-Oscillator
Simualtion Mode: Regular-Spaced Point Simulation
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Figure 8.16: Regular-Spaced Points Simulation of Van défRaillator
Simulation of the Van der Pol oscillator showing the trapegtof 2’ using the
regular-spaced points method with 5 points per interval.

Simulation of model: VanDerPol-Oscillator
Simualtion Mode: Regular-Spaced Point Simulation

Figure 8.17: Regular-Spaced Points Simulation of Van défRaillator
Simulation of the Van der Pol oscillator showing the tragegtof = using the
regular-spaced points method with 20 points per interval.

Simulation of model: VanDerPol-Oscillator
Simualtion Mode: Regular-Spaced Point Simulation
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Figure 8.18: Regular-Spaced Points Simulation of Van défRaillator
Simulation of the Van der Pol oscillator showing the tragegtof 2’ using the
regular-spaced points method with 20 points per interval.
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can be seen that there are a few errors around the peak of seithtmn. Figures 8.17
and 8.18 show the same method except using 20 points to apm@iexthe interval. There
is a noticeable difference between the two around the peabscdlations in the trajec-
tory for 2’ but the main difference is observed in the first oscillati®here is very little
difference between the outputs fer Approximating the intervals using five to ten points
offers a reasonable output trajectory executed in a reb$®fength of time, however as
the number of points is increased the results of the sinrlaénd to become sound and

complete.

8.5.2.3 Monte-Carlo Point Simulation

The final mode for semi-quantitative simulation in JMorverMonte-Carlo Point Sim-
ulation. This method offers the benefits of being able to peedsimulations with no
excess widening of the intervals. It also produces an outjuse to being sound and
complete within the quickest time of any of the other methoéls such it is the mode

most recommended for use if very accurate simulations apgnes.

Figures 8.19 and 8.20 show the output of the Monte-Carlo atettith 100 initial states.

It can be seen that these graphs are very similar to the regpgaed point method with
20 points however the Monte-Carlo version takes far lesg ticmexecute making it a
better choice. This makes the Monte-Carlo Point Simulatémimnique a good method
to approximate the outcome of the sound and complete simonlef the regular-spaced
point technique.. The disadvantage with this method honisubat since it uses random

points within the intervals, no two outputs will be identica

To test the Monte-Carlo method further, the Van der Pol tzoil was simulated again ex-
cept using the following initial values:, 2/, = [1] andP = [0.9, 1.1, 0.1, 0.1].
Having a parameter as an interval causes a different fornutpiub as can be seen in fig-

ures 8.21 and 8.22. The initial values fomndz’ are real numbers hence have no width
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Simulation of model: VanDerPol-Oscillator
Simualtion Mode: Monte Carlo Point Simulation

Variblevalies

Figure 8.19: Monte-Carlo Points Simulation of Van der Potiletor
Simulation of the Van der Pol oscillator showing the tragegtof = using the
Monte-Carlo points method with 100 initial states.

Simulation of model: VanDerPol-Oscillator
Simualtion Mode: Monte Carle Point Simulation
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Figure 8.20: Monte-Carlo Points Simulation of Van der Potiletor
Simulation of the Van der Pol oscillator showing the trapegtof 2’ using the
Monte-Carlo points method with 100 initial states.
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Simualtion Mode: Monte Carlo Point Simulation

Marable valies
6 o o N
o @ o b b o o

o

)

o
il
\

Figure 8.21: Monte-Carlo Points Simulation of Van der Potiletor
Simulation of the Van der Pol oscillator with fuzzy parammefeshowing the
trajectory ofz using the Monte-Carlo points method with 100 initial states

Simulation of model: VanDerPol-Oscillator
Simualtion Mode: Monte Carlo Point Simulation
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Figure 8.22: Monte-Carlo Points Simulation of Van der Potilator
Simulation of the Van der Pol oscillator with fuzzy paranme®eshowing the
trajectory ofz’ using the Monte-Carlo points method with 100 initial states

138
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Simulation of model: VanDerPol-Oscillator
Simualtion Mode: Monte Carlo Point Simulation

Figure 8.23: Monte-Carlo Points Simulation of Van der Potiletor
Simulation of the Van der Pol oscillator with all initial we#s and parameters
having a fuzzy interval showing the trajectory.otising the Monte-Carlo.

Simulation of model: VanDerPol-Oscillator
Simualtion Mode: Monte Carlo Point Simulation
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Figure 8.24: Monte-Carlo Points Simulation of Van der Potiletor
Simulation of the Van der Pol oscillator with all initial weds and parameters
having a fuzzy interval showing the trajectory.gfusing the Monte-Carlo.

however since one of the parameters has interval width gesthe values af andz’ to
widen. These outputs have be verified with the results redart (Keller, 1999) show-
ing that JMorven produces the correct results and therefise showing that auxiliary

variables can be used in a non-constructive environment.

The final test for the fuzzy interval simulation was using khente-Carlo Points method
on the Van der Pol oscillator with, 2/, P, = [0.9, 1.1, 0.05, 0.05] which is sim-
ilar to what a real problem might be like; i.e. all parametansgl initial values having a

fuzzy interval. The simulated trajectories can be foundgnris 8.23 and 8.24.

The outputs show that the initial interval is very narrow &g it widens with time. This
is not due to errors in simulation but due to the parametarggbacompletely specified.

The simulation still results in a very useful output to detere how the system could
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behave in reality. Once a graph like this has been creatsdissible to use it for fault

detection; the initial values may represent the acceptaldeances in the system.

8.5.3 Simulation Spectrum

This section briefly demonstrates JMorven simulating insiectrum from fully qualita-
tive to fully quantitative using the simple mass on a spriragel as used in section 8.1.2

and defined by the following equation:

2 =F —mx
where F' is the external force applied on the massz is the displacement of the mass
and (" is the acceleration of the mass. For all experiments, theefaias set to zero and

the mass is set as unity.

8.5.3.1 Qualitative Simulation

The qualitative simulation results in the following stat@nisitions in order:
r=[++-]=>H+0-]=+--] =00 = [-—+] = [-0+] =
[—,+,+] — [0, +,0]

and then loops round again displaying oscillatory behavithe qualitative simulation
figure is shown in figure 8.2). Even with the course quantitycepof the signs it is still

possible to observe a trend in the behaviour of the simuratio

8.5.3.2 Semi-Quantitative Simulation

The initial state was specified with fuzzy values= [0.9 1.1 0.05 0.05] andz’ =

[0.95 1.05 0.025 0.025]. The simulated trajectory is shown in figure 8.25.
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Simulation of model: spring-system-one-var
Simualtion Mode: Monte Carlo Point Simulation

(] time 30

Figure 8.25: Semi Quantitative Simulation of the Mass on @ngpmodel

It can be seen that there are oscillations in the simulatiohthat the mass stays within
a small threshold at all times. This is due to the intervakscged in the initial state;
if the interval was wider so would the threshold be and siryild the initial interval is

narrower the threshold would be narrower too.

8.5.3.3 Quantitative Simulation

The initial state was specified with exact values= 1 and2’ = 1. The simulated

trajectory is shown in figure 8.26.

Simulation of model: spring-system-one-var
Simualtion Mode: Basic Interval Simulation

Figure 8.26: Quantitative Simulation of the Mass on a Spniruglel
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This simulation shows that since the initial state was $getwith exact numerical in-
formation then the simulation results in a definite trajegctoo. These experiments show
that JMorven is capable of simulating on the spectrum frolty fyualitative using the
signs quantity space, through semi-quantitative adogtingy numbers, and fully quan-

titative using exact numbers.

8.5.4 Parallel Semi-Quantitative Simulation

The JMorven parallel framework can be used to speed-up theggantitative simulation
too. To test the parallelisations, the Van der Pol oscitlatas used with the Regular
Spaced Point simulation method with ten points per intervidie results of the times

taken are summarized in table 8.5

number of execution units,
1 \ 2 \ 3 \ 4 \ 5 \ 6 \ 7 \ 8
Time Taken (s)| 88.155| 50.177| 39.625| 30.012| 26.388| 22.716| 18.288| 17.210
Speed-upS, 1.000 | 1.757 | 2.225 | 2,937 | 3.341 | 3.881 | 4.820 | 5.122
Efficiency, £ 1.000 | 0.879 | 0.742 | 0.734 | 0.668 | 0.647 | 0.689 | 0.640

Table 8.5: Parallelisation Benefits of JMorven Semi-Quatitie Simulation

It is clear to see that the parallelisations benefit the timkern for semi-quantitative sim-

ulation to execute. Running the same simulation on eightgs®sors results in a speed-up

of over five times which is a great advantage.




Chapter 9

Discussion, Conclusions and Future

Directions of the JMorven Framework

9.1 Discussion

JMorven offers two major improvements to existing qualatreasoning implementa-
tions; speeding up the execution by implementing paralébns into the core algo-
rithms, and offering an advanced mechanism for simulatiognffully qualitatively to
fully quantitatively in a non-constructive manner. JMamvs the only current qualitative
reasoner that benefits from parallelisations in every stge also the only system that
can simulate on the spectrum from fully qualitative to fullyantitative. It is also worth
mentioning that JMorven is also the only semi-quantitatiystem that uses automatic
n-th order methods for integration depending on the amourtteoivative information
provided, and it is the only system that uses auxiliary \@es in a non-constructive

environment. Each of these novelties are discussed below.

JMorven was completely written from scratch and with pafedations in mind. These

parallelisations were implemented for every major stagexetution and offer substantial
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gains over the sequential running time. In qualitative maolde runtime is dominated by
two main stages; the state generator and the transitioma@eneAs such, most effort was
concentrated on these areas to optimise the algorithmshievacthe greatest speed-up
from parallelisations. The state generator offers thetgetdenefits displaying a speed-
up in excess of six times over the sequential running timenwtianing on an eight
processor machine. The algorithm suffers slightly durivgearly iterations as there may
not be enough tuples to fully utilise all of the available @x@on units. This is only
apparent for the first few iterations of the state generatoclwtake a small amount of the
total time of state generation. This is one reason why thedsp is not linear. Another
reason may be due to the operating system used on the tesinmatthis believed that
a more up-to-date version of the Solaris operating systeaidaallow greater benefits to
be observed due to a better threading model. The transiéinargtion displays a positive
speed-up too. However it is not quite as great as the benefiteistate generator. A
speed-up of over five times is observed when running on eigigdggsors which is still
an excellent performance gain. The transition generationlsl theoretically allow very
close to linear speed-up however it is thought that the impl&ation of some of the core
methods in JMorven do not perform well in parallel which effethe performance. These
methods are used heavily in the tuple filter and pairwiser fitages which is why they
do not offer a major performance gain. Since these filters takery small percentage
of time to execute efforts were not concentrated on optimgishem. If time allowed,
optimising these methods might result in better benefitgHerfilters and should also
improve the transition generation too. Overall, the gaéire stages have been shown to
benefit greatly from parallelisations therefore | suggeist strategy is valid for speeding

up the implementation of a qualitative reasoner.

The semi-quantitative simulation mode in JMorven allowsdeis to be simulated with-
out precise information yet still produces very usefuldcipries for the variables over
time. There are two main methods used to simulate semi-atvely; one which uses

real intervals and interval arithmetic and another whicphragimates intervals as a set
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of points. These two methods have similar sub-strategieshwhclude extreme method,
regular-spaced methods and Monte-Carlo methods. Gepnénalextreme methods (Ba-
sic Interval and Extreme Points) offer a very quick outpub&generated but they are
not accurate. The Basic Interval method suffers from exeadening of any intervals
due to the nature of interval arithmetic and the Extreme 8aimethod does not bound
all solutions however it does not suffer from the intervaldeming. The Basic Interval is
therefore complete in that it bounds all of the real solwitmthe problem however it is
unsound as it also contains spurious behaviours in the fénmierval divergence. The
Extreme Points method on the other hand is incomplete ag# dot bound all solutions
however it is sound as it does not contain any spurious beheszi This is true in general
of the two main techniques. All of the methods using realrirdks are complete but not
sound and all of the methods that approximate intervals@gogrof points are sound but
incomplete. The regular-spaced and Monte-Carlo point agthmprove the solutions
and offer sound and complete results in the limiting casesnadn infinite number of
points are used or when the interval is split into an infinisenibber of sub-intervals. In
reality, it is possible to generate a finite set of points ¢envals with zero width since
numbers in computers have a finite representation. In tkis, ¢ae results would be sound
and complete to the precision of the floating point numberasgntation. The Regular-
Spaced Interval method allows the model to be simulatedbiogér before the intervals
diverge, and the Regular-Spaced Point approach boundsahtre real solution as the
number of points increases. These methods achieve greafermpance when more reg-
ular spaces are used, however this can take a very long timetute. To overcome this,
Monte-Carlo methods are also implemented which give a gaatktoff between achiev-
ing close to the real solution whilst executing in a reasteédngth of time. The best
approach appears to be the Monte-Carlo Point method whiotiupes a solution very
close to the real one and in good time. The disadvantageofthait it uses random num-
bers however with a sufficient number of iterations it is iregible to tell the difference

between two different Monte-Carlo simulations.
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To make the integration phase more accurate, several tpegmivere researched and it
was decided that, for non-constructive methodsh order Taylor Series was the best
choice. This uses all of the derivative information for eaahable to estimate the suc-
cessor values after a time-stép It was shown that when using second order methods
over first order methods, the accuracy of the integratioresmed dramatically. This al-
lows the modeller the design choice of adding extra dekieatio the model thus allowing

more accurate simulations to be carried out.

To allow accurate simulation in a semi-quantitative mand®torven adopts the use of
auxiliary variables. These variables are not mapped to aaptity space and thus do not
unnecessarily diverge any intervals when using them. Thase previously only been
implemented in a constructive environment where there taie sules about the order-
ing of constraints. JMorven implements these and gets drtha ordering constraints
by using Inverse Constraint Operations and looping rouedtmstraints until no further
narrowing of the intervals can take place. It was found thiidping through the con-
straints was necessary then only a small amount was redghieeefore the runtime is not

severely affected by this technique.

9.2 Conclusions

One aim of developing a new qualitative reasoner was to ingittee runtime performance
by incorporating parallelisations throughout all of theimstages. Existing methods at-
tempted this, however they had a few drawbacks in that nattadjes were parallelised
and that they were designed for very specific hardware setlips motivated the de-
velopment of an abstract parallel architecture which wdaddoortable and allow it to
run on a wide variety of systems including single processwksatations, multi-processor

servers or in distributed network environments. After aalgsis of the runtime of each
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phase in the qualitative reasoner, efforts were concewmti@ the two stages which occu-
pied over 95% of the running time, although all stages haea Iparallelised. The results

show that the parallelisations offer a vast benefit over gggiential running time.

Auxiliary variables were implemented in the non-constigctlgorithms of JMorven.
The difficulty with this is due to the non-causally orderedgerty of non-constructive
methods; an auxiliary variable’s value may be required tased before being set. To
get around this JMorven loops around the constraints aantaithe auxiliary variable
updating the values until no more changes occur. JMorvenusssinverse Constraint
Operationswhich narrows the ranges of values more quickly thus thezdeawer itera-
tions of the constraints required to calculate the precidees of auxiliary variables. The
output from JMorven was verified against the output of Morsbawing that the use of

auxiliary variables in a non-constructive algorithm is gibte.

An aim of JMorven was to allow it to reason on the spectrum ffaity qualitative to
fully quantitative while maintaining a non-constructigarithm. The non-constructive
method is more general in that it does not require causatlgred models and would
allow models with algebraic loops to be simulated. This watsartrivial problem to solve
since interval arithmetic produces interval divergenddoen uses:-th order Taylor
Series for integration which allows the integration phaskbd more accurate when there
is more derivative information available. There are sdvagparoaches to the simulation
problem presented in JMorven, each offering some advastagye® disadvantages. From
the results it can be seen that it is possible to simulate/futervals in a non-constructive
manner. JMorven does this by approximating intervals asamof points. This can take
a long time to simulate for naive approaches therefore &oddbased on Monte-Carlo
techniques was implemented. This produces excellenttseisuh reasonable amount of

time and is the method recommended for use.

Non-constructive methods allow reasoning with more gdmeaalels that do not need to
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be causally ordered. This also allows models with algeboaips to be dealt with. Since
JMorven uses non-constructive methods, the input modetetineed to be causally or-
dered. One of the optimisations for speed in JIMorven refsrte constraints depending
on the number of valid tuples for each constraint. This mehasinternally the mod-

els are unlikely to be causally ordered; however, JMorvéhcsintinues to reason and
provide the expected results. This shows that qualitadgsaoning and quantitative simu-

lation can be successfully carried out using non-constreiedgorithms.

Overall IMorven has successfully met the original aims ansiges a framework for use

in a large variety of systems requiring simulation with aguiiy or imprecision.

9.3 Future Work

Throughout the design and implementation of JMorven séfeatures have been thought

of and hypothesised. These include:

¢ Qualitative Parallel Optimisations: The tuple and pairwise filters do not exhibit
many benefits from the parallelisations which is thoughtealbe to some of the
core methods in JMorven. Optimising these might allow themsiow a similar
speed-up to the state and transition generators. Since #tages take a small
percentage of time to execute compared with the State Genenad Transition

Analysis, and time for the project did not allow, this has be¢n attempted.

e Speed-up of complete executionit would be benificial to find out the speedup of
total execution time of running JMorven. Tests were onlydiaried for each stage
individually but seeing how the total execution time is afézl by parallelisations

would be a benefit in showing their advantage.
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e Semi-Quantitative Parallel Optimisations: Semi-quantitative simulations could
be optimised by utilising a local repository of the intes/al each execution unit
instead of a global one. This would allow less mutexes ansl ¢esnmunication
between execution units, therefore should display morefitesrfrom the paral-
lelisations. This would be of greatest benefit when imple@ein a distributed

network environment.

e Iterative Simulation: A strategy that could be used would be to create an itera-
tive method for semi-quantitative simulation in JMorvenigihwould carry out the
simulations using regular-spaced methods but would iteigtsimulate with more
points. This could be used to show a graph generated inirealgnd as more it-
erations complete, the graph would be updated. For exant@dregular-Spaced
Interval method could start with two sub-intervals whichultbgive a very approx-
imate output but then it could carry on to use ten sub-interaad refine the output
once this had completed. This would offer a method that dideguire estimating
how many sub-intervals to use as too few might not give a peeenough output,
however too many would take too long to execute. This metloadidcbe stopped

at any time when the output was sufficiently precise as dddigehe user.

e Web Service: Deploying JMorven as a web-service would allow it to be usest o
the internet and would be executed on large multiple-nodear&s. Since JMor-
ven has an abstract parallel architecture, it would be ablaake best use of the
available resources and would provide an efficient solutosimulation to a wide

user base.

e Scheduling Algorithm To run efficiently as a web service, or in an environment
where the processor power is not the same in every executibhsome sort of

scheduling algorithm should be implemented.

e Genetic Algorithms: It is thought that genetic algorithms could be used along
with the Monte-Carlo methods to produce faster, more atewatput trajectories

for simulating fuzzy intervals.
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e Step-size refinemen®At the moment JMorven uses a fixed step size for numerical
simulations. Using step-size refinement is a proven methodprove the accuracy
and/or the execution time of simulations. Adopting thigwaque would be a useful

addition to JIMorven.

¢ Qualitative/Quantitative Refinementlt is thought that the results of the quantita-
tive simulations could benefit the qualitative simulatidaysremoving some or all
of the spurious behaviours. It may also be possible thaitgtiaé simulation could
help some of the interval methods of quantitative simurabyg avoiding unneces-

sary interval divergence.

e n-tuple Fuzzy NumbersJMorven usegwin Interval Fuzzy Numbergs a repre-
sentation for fuzzy numbers. This allows fuzzy numbers todasoned with using
standard interval arithmetic. This could be extended teHazzy numbers with

many intervals which would allow more precise fuzzy numlterse simulated.

There have already been a number of additions to JMorveremgted by third parties

including:

A graphical model builder

A graphical qualitative behaviour viewer

A natural language generator for output behaviours

The inclusion of constraints using complex numbers

This shows that JMorven is an extensible framework and thdsé&ions should make

JMorven become a more powerful tool.
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Appendix A

JMorven Models

A.1 Single Tank Model

nmodel - name:  si ngl e-t ank
short-name: fst

NunSyst enVari abl es: 2
variable: go range:
variable: V range:

zero p-max NunDerivatives:
zero p-nmax NunDerivatives:

NunExogenousVari abl es: 1
variable: qi range: zero p-max NumDerivatives:

Constraints:
NunDi f f Pl anes: 2
Pl ane: 0 NunmConstraints: 2
Constraint:
Mappi ngs:
n- max n- max
n-large n-large
n- medi um n- medi um
n-smal |l n-smal |
zero zero
p-smal |l p-snall
p- medi um p- nedi um
p-large p-large
p- max p- max
Constraint: sub (dt 1 V) (dt 0 gi) (dt 0 qo)
Pl ane: 1 NunmConstraints: 2
Constraint:
Mappi ngs:
nl - dash nl -dash
ns-dash ns-dash
zero zero
ps- dash ps-dash
pl -dash pl -dash
(dt 2 V) (dt 1 qgi) (dt 1 go)

Constraint: sub

NunVar sToPrint: 3 VarsToPrint: V gi qo

func (dt 0 go) (dt 0 V) NumMappi ngs:

func (dt 1 go) (dt 1 V) NumMappi ngs:

1 gspaces:

2 gspaces:

1 gspaces:

tanks-qgs tanks-qs2

tanks-qs tanks-qgs2 tanks-qgs2

tanks-qgs tanks-qs2



A.2

nodel - na

A.2. Coupled Tanks Model

Coupled Tanks Model

me: coupl ed-t anks

short-nane: cpdt

NunByst e

vari abl e:
vari abl e
vari abl e:
vari abl e
vari abl e:

NunExoge
vari abl e

Constr ai

nVari ables: 5
hl range: zer pos NunDerivatives: 2 gspaces
h2 range: zer pos NunDerivatives: 2 gspaces

gx range: neg pos NumDerivatives: 1 gspaces
go range: zer pos NunDerivatives: 1 gspaces

nousVariables: 1
;g range: zer pos NunDerivatives: 1 gspaces

nts:

NunDi f f Pl anes: 2

Pl ane
Constra

Constr ai

Constr ai
Constra
Constr ai

Pl ane
Constra

Constra

Constra
Constr ai
Constra

0 NunConstraints: 5
nt: func (dt 0 go) (dt 0 h2) NunMappings: 3
Mappi ngs:
neg neg
zer zer
pos pos
nt: func (dt 0 gx) (dt 0 h12) Numvappings: 3
Mappi ngs
neg neg
zer zer
pos pos
nt: sub (dt 0 h12) (dt 0 hl) (dt 0 h2)
nt: sub (dt 1 hl) (dt 0 gi) (dt 0 qgx)
nt: sub (dt 1 h2) (dt 0 gx) (dt 0 qo)

1 NunConstraints: 5
nt: func (dt 1 go) (dt 1 h2) NunMappings: 3
Mappi ngs
neg neg
zer zer
pos pos
nt: func (dt 1 gx) (dt 1 h12) Numivappings: 3
Mappi ngs:
neg neg
zer zer
pos pos
nt: sub (dt 1 h12) (dt 1 hl) (dt 1 h2)
nt: sub (dt 2 hl) (dt 1 qgi) (dt 1 gx)
nt: sub (dt 2 h2) (dt 1 gx) (dt 1 qo)

NunVar sToPrint: 3 VarsToPrint: hl h2 hl2

h12 range: neg pos NunDerivatives: 1 gspaces

tanks-qs tanks-qgs2 tanks-qgs2
tanks-qgs tanks-qs2 tanks-qgs2
tanks-qgs tanks-qs2
tanks-qgs tanks-qs2
tanks-qgs tanks-qs2

tanks-qgs tanks-qs2
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A.3 Spring System Model

nmodel - name:  spring-system
short-nane: spr

NunBSyst enVari abl es: 3

variable: d range: n-max p-max NunDerivatives: 1 gqspaces: fuzzy-qs fuzzy-qs2

variable: x1 range: n-max p-nmax NumDerivatives: 2 qspaces: fuzzy-qs fuzzy-qs2
fuzzy-qs2

variable: x2 range: nl-dash pl-dash NunDerivatives: 2 gspaces: fuzzy-qs2 fuzzy-qs2
fuzzy-qs2

NunExogenousVari abl es: 1
variable: F range: n-max p-max NunDerivatives: 1 gqspaces: fuzzy-qs fuzzy-qs2

Constraints:
NunDi f f Pl anes: 2

Pl ane: 0 NunConstraints: 3
Constraint: func (dt 0 d) (dt 0 x1) NunmMappings: 9
Mappi ngs:
n- max n- nax
n-large n-large
n- medi um n- nedi um
n-small n-snall
zero zero
p-snmal |l p-snall
p- medi um p- nedi um
p-large p-large
p- max p- max
Constraint: func (dt 1 x1) (dt 0 x2) Numvappings: 5
Mappi ngs:
nl -dash nl -dash
ns- dash ns-dash
zero zero
ps-dash ps-dash
pl -dash pl -dash
Constraint: sub (dt 1 x2) (dt 0 F) (dt 0 d)

Pl ane: 1 NunConstraints: 3
Constraint: func (dt 1 d) (dt 1 x1) NumMappings: 5
Mappi ngs:
nl - dash nl -dash
ns- dash ns-dash
zero zero
ps-dash ps-dash
pl -dash pl -dash
Constraint: func (dt 2 x1) (dt 1 x2) NumMVappings: 5
Mappi ngs:
nl - dash nl -dash
ns- dash ns-dash
zero zero
ps-dash ps-dash
pl -dash pl -dash
Constraint: sub (dt 2 x2) (dt 1 F) (dt 1 d)

NumVar sToPrint: 1 VarsToPrint: d
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A.4 Algebraic Loop Model

nodel -nane: LRcircuit
short-nane: LR

NunSyst enVari abl es: 1
variable: u3 range: zero p-max NunDerivatives: 0 gspaces: fuzzy9

NunExogenousVari abl es: 4

variable: Rl range: R-mn R nax NumDerivatives: 0 gspaces: resistors
variable: R3 range: R-nmn Rnmax NumDerivatives: 0 qspaces: resistors
variable: U0 range: U mn U nax NumDerivatives: 0 gspaces: voltages
variable: 2 range: i-mn i-mx NumDerivatives: 0 gspaces: currents

NumAuxi | i aryVari abl es: 3
variable: ul
variable: i3
variable: i1l

Constraints: NunDiffPlanes: 1
Pl ane: 0 NumConstraints: 4

Constraint: nul (dt 0 ul) (dt 0 Rl) (dt 0 i1l)
Constraint: div (dt 0 i3) (dt 0 u3) (dt 0 R3)
Constraint: sub (dt 0 u3) (dt 0 U0) (dt O ul)
Constraint: add (dt 0 il1) (dt 0i2) (dt 0i3)

NunVar sToPrint: 1 VarsToPrint: u3
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A.5 Van der Pol Oscillator Model

nodel - nane: VanDer Pol - Gsci | | at or
short-nane: vdpo

NunSyst enVari abl es: 2
variable: x1 range: n-max p-nmax NumDerivatives: 1 qspaces: fuzzy-qgs fuzzy-gs
variable: x2 range: n-max p-max NumDerivatives: 1 qspaces: fuzzy-qgs fuzzy-gs

NunmExogenousVari abl es: 3

variable: one range: one one NunDerivatives: 0 gspaces: constants
Variable: P range: n-nmax p-max NumDerivatives: 0 gspaces: fuzzy-qgs
Variable: Qrange: n-max p-max NunDerivatives: 0 gspaces: fuzzy-qgs

NumAuxi | i aryVari ables: 5
Variable: A

Variable: B
Variable: C
Variable: D
Variable: E

Constraints:
NunDi f f Pl anes: 1

Pl ane: 0 NunConstraints: 7
Constraint: func (dt 1 x1) (dt 0 x2) NumVappi ngs: 9
Mappi ngs:

n- mex n- max

n-large n-large

n- medi um n- nedi um

n-smal | n-snall

zero zero

p-smal |l p-snall

p- medi um p- medi um

p-large p-large

p- max p- max
Constraint: nul (dt A (dt 0 Q (dt 0 x1)
Constraint: nul (dt B) (dt 0 x1) (dt 0 x1)
Constraint: sub (dt C) (dt 0 one) (dt O B)
Constraint: nul (dt D) (dt 0 P) (dt 0 x2)
Constraint: nul (dt E) (dt 0 D) (dt 0 O
Constraint: sub (dt x2) (dt 0 E) (dt 0 A

POOOOO

NumVar sToPrint: 2 VarsToPrint: x1 x2



Appendix B

JMorven Diagrams

B.1 Coupled Tanks Graph

Figure B.1: Coupled Tanks Graph of Complete Envisionment




Appendix C

JMorven State Repositories

C.1 Spring System State Repository

=STATE_REPOSI TORY

State U D:. e-5-e-5
x2: {zer , zer , zer}
F: {zer , zer}

x1: {zer , zer , zer}

d: {zer , zer}

Successor States:
e-5-e5

Predecessor States:
e-5-e5

State UD: h-8-6-5

x2: {pos , zer , neg}
F. {zer , zer}

x1: {zer , pos , zer}

d: {zer , pos}

Successor States:
9-9-3-5

Predecessor States:
p-7-9-5

State UD: b-2-m5

x2: {neg , zer , pos}
F: {zer , zer}

x1: {zer , neg , zer}

d:  {zer , neg}

Successor States:



C.1.

j-1-p-5
Predecessor States
3-3-j-5

State U D: 6-6-b-5

x2: {zer , neg , zer}
F: {zer , zer}

x1: {pos , zer , neg}

d: {pos , zer}

Successor States
3-3-j-5
Predecessor States
9-9-3-5

State UD: 9-9-3-5

x2: {pos , neg , neg}
F.: {zer , zer}

x1: {pos , pos , neg}
d: {pos , pos}

Successor States
9-9-3-5, 6-6-b-5
Predecessor States
9-9-3-5, h-8-6-5

State UD: 3-3-j-5

x2: {neg , neg , pos}
F. {zer , zer}

x1: {pos , neg , neg}
d: {pos , neg}

Successor States
3-3-j-5, b-2-m5
Predecessor States
3-3-j-5, 6-6-b-5

State UD. m4-h-5

x2: {zer , pos , zer}
F: {zer , zer}

x1: {neg , zer , pos}

d: {neg , zer}

Successor States

Spring System State Repository
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p-7-9-5
Predecessor States
j-1-p-5

State UD: p-7-9-5

x2: {pos , pos , neg}
F: {zer , zer}

x1: {neg , pos , pos}
d: {neg , pos}

Successor States
h-8-6-5, p-7-9-5
Predecessor States
p-7-9-5, m4-h-5

State UD: j-1-p-5

x2: {neg , pos , pos}
F.: {zer , zer}

x1: {neg , neg , pos}
d: {neg , neg}

Successor States
m4-h-5, j-1-p-5
Predecessor States
b-2-m5, j-1-p-5

--------------------------- End of State Repository

Nunber of states in repository = 9 (13 transitions)
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C.2 Coupled Tanks State Repository

=STATE_REPOSI TORY

State U D 3-3-1
hl: {pos , neg , pos}
h2: {pos , neg , neg}
h12: {pos , neg}

Successor States:
3-3-1, 3-c-I
Predecessor States:
3-c-1, 3-3-1, 3-6-1

State U D: 3-9-1
hi: {pos , neg , pos}
h2: {pos , pos , neg}
h12: {pos , neg}

Successor States:

3-9-1, 6-f-f, 3-9-0, 3-6-I
Predecessor States:

3-9-1, 3-8-1

State U D: 3-8-1
hl: {pos , neg , pos}
h2: {zer , pos , neg}
h12: {pos , neg}

Successor States:
3-9-1, 3-9-0

Predecessor States:

State UD: 3-9-r
hl: {pos , pos , pos}
h2: {pos , pos , neg}
h12: {pos , neg}

Successor States:

6-9-i, 3-9-r

Predecessor States:

6-9-i, 3-9-r, 3-9-0, 6-8-i, 3-8-0, 3-8-r
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State UD: 3-8-r
hl: {pos , pos , pos}
h2: {zer , pos , neg}
h12: {pos , neg}

Successor States:
6-9-i, 3-9-r

Predecessor States:

State UD: 3-9-0
hl: {pos , zer , pos}
h2: {pos , pos , neg}
h12: {pos , neg}

Successor States:
3-9-r

Predecessor States:
3-9-1, 3-8-1

State U D: 3-8-0
hl: {pos , zer , pos}
h2: {zer , pos , neg}
h12: {pos , neg}

Successor States:
3-9-r

Predecessor States:

State U D 3-6-1
hl: {pos , neg , pos}
h2: {pos , zer , neg}
h12: {pos , neg}

Successor States:
3-3-1

Predecessor States:
3-9-1

State UD: 9-9-9
hl: {pos , pos , neg}
h2: {pos , pos , neg}
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h12: {pos , pos}

Successor States:

6-9-i, 6-f-f, 9-i-9, 9-9-9

Predecessor States:

6-9-i, 9-i-9, 9-8-9, 9-9-9, 6-8-i, 9-h-9

State U D: 9-8-9
hl: {pos , pos , neg}
h2: {zer , pos , neg}
h12: {pos , pos}

Successor States:
9-9-9, 9-i-9, 6-9-i

Predecessor States:

State U D 6-9-i
hl: {pos , pos , zer}
h2: {pos , pos , neg}
h12: {pos , zer}

Successor States:
6-9-i, 3-9-r, 9-9-9, 9-i-9

Predecessor States:

3-9-r, 9-8-9, 6-8-i, 6-9-i, 9-9-9, 9-i-9, 9-h-9, 3-8-r

State U D: 6-8-i
hl: {pos , pos , zer}
h2: {zer , pos , neg}
h12: {pos , zer}

Successor States:
6-9-i, 3-9-r, 9-9-9, 9-i-9

Predecessor States:

State U D 3-1-1
hl: {pos , neg , pos}
h2: {pos , neg , pos}
h12: {pos , neg}

Successor States:
3-c-1, 3-1-1, 6-f-f, 6-1-cC
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Predecessor States:
3-c-I, 3-1-1, 6-1-c

State UD 9-1-3
hl: {pos , neg , neg}
h2: {pos , neg , pos}
h12: {pos , pos}

Successor States:
9-1-3, 6-1-c
Predecessor States:
6-1-c, 9-1-3, 9-1-6

State UD 7-1-9
hi: {pos , pos , neg}
h2: {pos , neg , pos}
h12: {neg , pos}

Successor States:
7-1-9, 8-1-9
Predecessor States:
7-1-9, 7-1-8

State U D 7-1-8
hl: {zer , pos , neg}
h2: {pos , neg , pos}
h12: {neg , pos}

Successor States:
7-1-9, 8-1-9

Predecessor States:

State UD: 9-1-9
hl: {pos , pos , neg}
h2: {pos , neg , pos}
h12: {pos , pos}

Successor States:

9-1-6, 9-0-9, 9-1-9, 6-f-f
Predecessor States:

9-1-9, 8-1-9
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State UD: 8-1-9
hl: {pos , pos , neg}
h2: {pos , neg , pos}
h12: {zer , pos}

Successor States:
9-0-9, 9-1-6, 9-1-9
Predecessor States:
7-1-9, 7-1-8

State UD: 9-1-6
hi: {pos , zer , neg}
h2: {pos , neg , pos}
h12: {pos , pos}

Successor States:
9-1-3

Predecessor States:
9-1-9, 8-1-9

State UD: 9-r-9
hi: {pos , pos , neg}
h2: {pos , pos , pos}
h12: {pos , pos}

Successor States:

9-r-9, 9-i-9

Predecessor States:

9-r-9, 9-0-9, 8-n-8, 9-i-9, 9-h-9, 9-g-9

State UD: 9-0-9
hl: {pos , pos , neg}
h2: {zer , pos , pos}
h12: {pos , pos}

Successor States:
9-r-9, 9-i-9

Predecessor States:

State UD: 9-0-9
hl: {pos , pos , neg}
h2: {pos , zer , pos}
h12: {pos , pos}



C.2.
Successor States:
9-r-9
Predecessor States:
9-1-9, 8-1-9
State UD: 8-n-8
hl: {zer , pos , neg}
h2: {zer , zer , pos}
h12: {zer , pos}
Successor States:
9-r-9
Predecessor States:
State U D 6-1-c
hl: {pos , neg , zer}
h2: {pos , neg , pos}
h12: {pos , zer}
Successor States:
9-1-3, 3-1-1, 3-c-I, 6-1-c
Predecessor States:
9-1-3, 3-1-1, 3-c-I, 6-1-c
State U D 3-c-|
hl: {pos , neg , pos}
h2: {pos , neg , zer}
h12: {pos , neg}
Successor States:
3-1-1, 3-c-1, 3-3-1, 6-1-c
Predecessor States:
3-1-1, 3-3-1, 3-c-1, 6-1-c

State UD 9-i-9
hl: {pos , pos , neg}
h2: {pos , pos , zer}
h12: {pos , pos}

Successor States:
9-r-9, 6-9-i, 9-i-9, 9-9-9

Predecessor States:

Coupled Tanks State Repository
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9-r-9, 6-8-i, 9-8-9, 6-9-i, 9-9-9, 9-i-9, 9-h-9, 9-0-9

State U D: 9-h-9
hl: {pos , pos , neg}
h2: {zer , pos , zer}

h12: {pos , pos}

Successor States:
9-r-9, 6-9-i, 9-i-9, 9-9-9

Predecessor States:

State UD: 6-f-f
hl: {pos , zer , zer}
h2: {pos , zer , zer}
h12: {pos , zer}

Successor States:

6-f-f
Predecessor States:
3-9-1, 3-1-I, 9-1-9, 6-f-f, 9-9-9

--------------------------- End of State Repository

Nunmber of states in repository = 28 (71 transitions)



Appendix D

JMorven Code

D.1 JMorvenThread

The code below shows the implementation of a thread in JMpriegmed a JMorven-
Thread. This provides a mechanism for keeping track of thef Each thread, the number
of threads queued and running as well as utility methods lhwailow the current thread
to wait until either a thread is complete, all threads aremete or one queued thread can
be executed.

| *

* JMorvenThread. j ava

*

* Created on 09 May 2005, 16:01

x/

package JMorven. Utilities;

inmport java.util.x;

[ xx

This is a Thread w apper which displays debug info for timngs/IDs if requested.
This class should also carry out some housekeeping to have control over the
nunber of Threads running at once and al so provide a nmechanismto wait for
Threads to become available or finish .

@ut hor Allan M Bruce

public class JMorvenThread extends Thread

{

| *x

* The number of threads currently running and queued
*/

private static int mNumQueued = 0, nmNunmRunning = O;
[ xx

* The maxi mum nunber of threads to spawn at one tinme
*/

private static int mvaxThreads;

[ xx

* Flag to determ ne whether to show timng/lDs of usage
*/

private static bool ean nVerbose;

| *x

* A counter for the ID of the next spawned thread

*/

private static long mDs = O;

| *x

* Lock for synchronizing access to shared vari abl es
*/

private static Object nBStaticlLock = new Qoject();
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| *x

* The I D of the instantiated thread
*

/

private |l ong m D;

| *x

* Initialise the paraneters for the threads - call at start of day before
* using the Cl ass

* @ar am xi MaxThreads The maxi mum nunber of threads to spawn at one tine
* @aram xi Verbose Flag to determ ne whether to show timng/lIDs of usage
*/

public static void init(int xi MaxThreads, bool ean xi Ver bose)

{
nVer bose = xi Ver bose;
mvaxThr eads = xi MaxThr eads;
}
| *x
* The run nethod - displays extra info if in debug node
*/
public void run()
{
synchroni zed( St at i cLock)
mNunmRunni ng++;
}
/1 if verbose, take note of the tine and print a start nmessage
long I StartTine = O;
if (mverbose)
{
Systemout.println("Thread " + M D + " started");
System out. flush();
IStartTime = SystemcurrentTimeMI1is();
}
/1 do the work!
super.run();
/1 if verbose, find out the tine taken and print a message
if (mverbose)
{
long | EndTine = SystemcurrentTineMI11lis();
long | TimeTaken = | EndTine - | StartTi ne;
Systemout.println("Thread " + mM D + " finished, tine taken ="
+ | Ti meTaken/ 1000.0 + "s");
System out. flush();
}
/1 decrenent the counter and notify all threads
synchroni zed(nSt ati cLock)
mNunmRunni ng- - ;
munmQueued- - ;
nStati cLock. notifyAll();
}
}
| *x
* This waits for threads to start and finish their work.
*/
public static void waitFor ThreadsToFi ni sh()
{

synchroni zed( St at i cLock)

/1 wait until we have started if we haven't already
whi l e (mMNumQueued != 0)
{

try

ntt ati cLock. wait ();

catch (Exception exc)
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{
}
}
}

}
[ xx
* This waits for a thread to finish
* @eturn the nunber of threads still running
*/

public static int waitForAThreadToFi ni sh()
{

synchroni zed( St at i cLock)

if (mMNumueued == 0)
return O;

try
nSt ati cLock. wai t () ;

catch (Exception exc)

{
}
return mNurmRunni ng;
}
}
| *x

* This waits until a Thread becones available - i.

* bel ow t he nunber of threads specified in init()
*/

public static void waitUntil ThreadBeconesAvai |l abl e()

{
synchroni zed( St ati cLock)
whi | e (mNunRunni ng > mvaxThr eads)
{
try
nSt ati cLock. wait();
catch (Exception e)
{
}
}
}
}
| *x

* Creates a new instance of JMorvenThread
*/

publ i ¢ JMorvenThr ead( Runnabl e xi Tar get)

{

super ( xi Target);

synchroni zed( St at i cLock)

m D = ml Ds++;
mNumQueued++;
}

if (mverbose)

Systemout.println("Thread " + M D + " created");

System out. flush();

the counter drops
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Appendix E

Publications

Below are a list of papers which have been peer reviewed arepsex for publication:

e A. M. Bruce and G. M. Coghill,“Implementing Parallelisati® in a Qualitative
Reasoning Engine”Proceedings of the 5th International Conference on Recent
Advances in Soft Computing, RASC2Q84 390-396, Nottingham, UK, 2004

(Received ‘Best Student Presentation Award’)

e A. M. Bruce and G. M. Coghill, “Parallel Fuzzy Qualitative &mning”,Proceed-
ings of the 19th International Workshop on Qualitative Reasg, QR2005pp
110-116, Graz, Austria, 2005

e A. M. Bruce and G. M. Coghill, “Implementing Parallelisat®in a Fuzzy Quali-
tative Reasoning EngineProceedings of the 5th annual UK Workshop on Compu-
tational Intelligence, UKCI20050p 36-43, London, UK, 2005

e G. M. Coghill, A. M. Bruce, C. Wisley and H. Liu, “Integratinguzzy Qualitative
Trigonometry with Fuzzy Qualitative EnvisionmenProceedings of the 5th annual
UK Workshop on Computational Intelligence, UKCI200p 97-104, London, UK,
2005



