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Abstract

The work defended in this thesis introduces a novel approachto constraint-centred qual-

itative reasoning in a non-constructive manner. Non-constructive approaches have many

advantages including the fact that they do not require models to be causally ordered and

can therefore reason with systems which contain algebraic loops. This new approach

combines reasoning on the spectrum from fully qualitative to fully quantitative. In ad-

dition to this, all underlying algorithms have been implemented in parallel to decrease

execution times.

Previous work into parallel qualitative reasoning showed that execution time decreased

over sequential implementations however the work had two main disadvantages. First, not

all stages of execution were implemented in parallel therefore the design was not optimal

and secondly, the implementation was presented in the form of a dedicated hardware

architecture.

Several methods exist to reason with intervals or fuzzy numbers however no non-

constructive approach offers results which are sound and complete. A new qualitative

reasoner, named JMorven, was implemented completely from scratch to overcome the

limitations described above. JMorven is the successor to Morven but presents a novel set

of algorithms working non-constructively and has an abstract parallel architecture which

allows it to execute faster when run in distributed computing environments. The novel

work presented and tested in this thesis consists of:

1. A novel portable parallel architecture allowing speed-up of every stage of execution.

2. The use of auxiliary variables in a non-constructive environment.
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3. More accurate simulation usingn-th order Taylor Series.

4. Incorporating several non-constructive fuzzy intervalsimulation techniques.

5. A method of simulating fuzzy intervals non-constructively which is asymptotically

sound and complete.

6. Offering the ability to carry out numerical simulations non-constructively from a

qualitative model description.

7. A single non-constructive simulation engine which is capable of reasoning on the

spectrum from fully qualitative to fully quantitative.
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Chapter 1

Introduction

The work completed for this thesis involves developing methods for non-constructive

simulation in a parallel manner for a novel qualitative reasoning inference engine and

implementing the ideas in a system completely written from scratch.

Non-constructive simulation approaches can be thought of as generate-and-test methods

which involves determining all possible combinations of behaviours and discarding those

that are inconsistent. This differs from constructive approaches which require a strict

model structure as they construct successor values for system variables and use these to

update all remaining variables. Non-constructive techniques offer several advantages over

constructive methods. They are more general as they do not impose a strict structure on

the input models; models do not need to be causally ordered which allows algebraic loops

within models to be reasoned with. Chapter 2.4 discusses thedifferences between the two

approaches in detail.

Parallel computing techniques allow execution times to be decreased dramatically when

multiple processing units are available. This is beneficialto qualitative reasoning since
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many implementations run slowly due to the large number of possible behaviours pro-

duced. Implementing core algorithms in parallel allows theuse of multiple processors to

carry out the calculations in parallel thus speeding up the execution time of qualitative

simulation. Chapter 3 discusses the advantages of parallelcomputing and methods to

determine how efficient parallel algorithms are.

1.1 Motivation

The background context of the project was the development a model-based planner that

could be used in harmful environments based on GraphPlan (Blum and Furst, 1997). It

became apparent early on that there was not a suitable implementation of a qualitative

reasoner that could be used for the purpose therefore a basicqualitative reasoner was to

be developed. After a short time, interests shifted toward creating a more useful quali-

tative reasoning implementation; therefore some researchwas undertaken into previous

efforts to speed up execution times and to obtain more precise simulations than existing

techniques.

There was an attempt by another group to implement an existing qualitative reasoner,

QSIM (Kuipers, 1986), using parallel algorithms to improveperformance. This was suc-

cessful although there were a few drawbacks with their design and these provided the mo-

tivation to create a novel qualitative reasoning system which would overcome these dis-

advantages. The desire was to implement a new abstract architecture which was portable

allowing it to be executed on a wide variety of computer systems and to incorporate par-

allelisations in every stage possible.

The desire to operate non-constructively relaxes the constraints on the models used in a

system in that they may contain algebraic loops and do not require any specific ordering

of the equations used to describe the model. No existing qualitative reasoning approach
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provides a reasonable and accurate output without including spurious behaviours. The

development of a non-constructive semi-quantitative simulation engine commenced that

would allow reasoning on the spectrum from fully qualitative to fully quantitative. This

presents a very useful tool in the development of many systems allowing simulations to

be carried out using pure qualitative parameters, fuzzy intervals or precise quantitative

information depending on the known precision of the system being simulated. Bridging

the gap between qualitative and numerical simulation like this provides a suitable tool for

many different applications, hopefully extending the user-base of qualitative reasoning.

These new approaches have been implemented in a single framework called JMorven.

The name follows from its immediate predecessor, Morven, and the fact that the new

framework is implemented in the Java programming language.Although JMorven is

the successor to an existing qualitative reasoner, the coreinference engine is completely

novel as it uses non-constructive approaches and is implemented completely in parallel.

JMorven adopts several features from its predecessor whichare discussed in more detail

in chapter 4.

1.2 Novel Contributions

Throughout the work during the PhD several novel features have been implemented in

JMorven. These novel contributions are as follows:

1. A novel portable architecture with parallel optimisations: the parallelisations are

abstract allowing the implementation to benefit from multiple processors or mul-

tiple computers in a distributed computing network. This allows JMorven to take

advantage of several different hardware setups.

2. The use of auxiliary variables in a non-constructive environment. Previously, these
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have been used constructively which requires ordering of the constraints and limits

models to those with no algebraic loops. These auxiliary variables can also be used

in parallel which is novel.

3. Using n-th order Taylor Series as an integration method. Most exisitng non-

constructive qualitative reasoners use Euler integrationsince they only reason about

one derivative per variable. JMorven uses multiple derivatives and automatically

integrates with as much derivative information as possibleto give more accurate

integration approximations.

4. Incorporating several non-constructive fuzzy intervalsimulation techniques. Inter-

val simulation makes use of a QR model and a partially specified initial state and

uses numerical techniques to simulate the system behaviourover time. Previously,

all successful interval simulators have been implemented in a constructive manner

limiting the types of model which can be used.

5. The ability to produce asymptotically sound and completenon-constructive simula-

tions. All previous methods produce either sound or complete results but JMorven

offers a method which is both sound and complete as the numberof iterations is

increased. Monte-Carlo methods are also used as a quick approximation to these

results.

6. Offering the ability to carry out numerical simulations non-constructively from a

qualitative model description. This allows precise numerical simulation trajectories

to be calculated if a precise initial state can be defined.

7. A single non-constructive simulation engine which is capable of reasoning on the

spectrum from fully qualitative to fully quantitative allowing it to be used through-

out the development of any model design from concept throughprototype to final

product.
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1.3 Thesis Organisation

The work contained in this thesis is divided into three main parts. The first part com-

prising chapters 2, 3, 4 and 5 introduces the field and critically analyses several existing

implementations which are used and extended to create JMorven. The second part, con-

sisting of chapters 6 and 7 presents the JMorven implementation and all design choices

that were faced during development. The third and last part containing chapters 8 and 9

presents the results and findings of the experiments used to test the JMorven implemen-

tation with discussions and conclusions presented reflecting on the work as a whole. The

chapters are briefly summarised below:

• Chapter 2 This chapter introduces the field of qualitative reasoning and the motiva-

tions behind it. The different modes of operation of a typical qualitative reasoning

engine are briefly summarised. Design choices are presentedincluding ontological

choices and algorithm approaches. Finally a brief overviewof some existing quali-

tative reasoners is given with a more detailed discussion ofQSIM since it is one of

the main predecessors to JMorven.

• Chapter 3 A brief introduction to parallel computing is given detailing important

aspects of performance increases and how to define the efficiency of parallel al-

gorithms. A review of qualitative reasoning and parallel computing techniques

combined is presented before a critical analysis of Parallel QSIM; the only known

existing qualitative reasoning engine to be implemented inparallel.

• Chapter 4 This chapter begins with an introduction to fuzzy numbers asa method

of representing uncertainty. Two existing fuzzy qualitative reasoners, FuSim and

Morven are analysed since they introduced many of the features incorporated into

JMorven. A non-constructive synchronous simulator, SyNCSim, is briefly dis-

cussed as the ideas used in it are extended and used in JMorvento conduct semi-

quantitative and quantitative simulations.
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• Chapter 5 In this chapter, numerical simulation is introduced and techniques for

integration are discussed. There is also a brief introduction to interval arithmetic

and the problems encountered when using it. There is a critical analysis of the ex-

isting semi-quantitative simulation strategies. These fall into two main categories;

those that are based on QSIM and those that use fuzzy numbers.A summary of the

many approaches is given at the end of the chapter.

• Chapter 6 JMorven is introduced detailing the algorithms used and howthey in-

teract with each other. Each main stage of the qualitative aspect is discussed and

how it was implemented in parallel. Finally, some extra features of JMorven are

discussed.

• Chapter 7 This chapter begins by presenting a new representation for fuzzy num-

bers so that they can make use of interval arithmetic. The integration technique used

in JMorven is outlined and there is a discussion of some of thetechniques used to

aid narrowing intervals when used in a non-constructive manner as in JMorven. All

of the methods of simulation are presented which fall into two main categories;

those based on real intervals and those that approximate intervals as a group of

points.

• Chapter 8 The results chapter is split into three main sections. The first section

presents the qualitative experiments and results from themto verify that JMor-

ven produces the correct output and that auxiliary variables can be used non-

constructively. The second section outlines the experiments used to determine how

much of a benefit the parallel algorithms offer and how much speed-up is achieved.

Finally, the third section shows the performance of each individual technique used

in semi-quantitative simulation and summarises the pros and cons of each. The

semi-quantitative simulation is also tested to show that italso benefits from the

parallel architecture of JMorven.

• Chapter 9 Finally the results are discussed and a conclusion is drawn reflecting on

the initial aims and motivations of the work. Some future work is also proposed.



Chapter 2

Qualitative Reasoning

2.1 Introduction to Qualitative Reasoning

Numerical simulation can provide extremely useful predictions about how systems be-

have, but it is not always possible to construct quantitative models due to a lack of un-

derstanding or a lack of precise numerical information, forexample obtaining values for

kinetic parameters for the rate of cellular reactions are not reliable with current experi-

mental protocols (de Jong, 2003). If this is the case carrying out a numerical simulation

is impossible; however qualitative reasoning can be used instead to suggest behaviours

from the information that is known.

Qualitative Reasoning (QR) is an area of Artificial Intelligence which was first studied

in the late 1970s and early 1980s (de Kleer, 1977, 1979; Forbus, 1980, 1981; Kuipers,

1986). Qualitative reasoning has much in common with early research conducted in Naı̈ve

Physics (Hayes, 1979, 1985) and common-sense reasoning (Kuipers, 1984; Simmons,

1986). The motivation behind QR was to emulate how the human mind performs basic

operations without the need for precise numerical information, or to be able to reason

when there is some knowledge or information missing.



2.1. Introduction to Qualitative Reasoning 20

QR has been used in industrial applications, one of the first being a self-maintaining pho-

tocopier (Shimomura et al., 1995) and more recently a diagnosis tool for an engineering

plant (Coghill, 2000) and diagnosis in the automotive industry (Price, 2000; Struss and

Price, 2004). There are several different fields in which QR has been used including dig-

ital circuits (Williams, 1984a; Kaul et al., 1992; Lee, 1999b) including detecting failure

modes and its effects (Pugh and Snooke, 1996; Lee, 1999a, 2000; Lee and Ormsby, 1992),

tutoring (Lulis et al., 2004; de Koning et al., 2000), diagnosis (de Kleer and Williams,

1987; Ng, 1991; Liu and Coghill, 2005b), system identification (Kay et al., 2000), learn-

ing (Coghill et al., 2004) and many others (Bredeweg and Struss, 2004). More recently

areas utilising qualitative reasoning are biology (Trelease and Park, 2003; King et al.,

2005) and ecology (Salles and Bredeweg, 2003) since these areas lack enough precise

data to use numerical techniques. For a review detailing many practical uses of quali-

tative reasoning see (de Jong, 2003). There is still much interest in the field of QR and

a future vision of applications include The Science Bot, virtual vehicles, understanding

and managing complex natural systems, interpretation of 4Dmedical data and robust au-

tonomous problem solvers in the face of uncertain situations (Price et al., 2005).

Qualitative Reasoning can been described as the study of ‘reasoning without numbers’.

Numerical techniques use real numbers which have infinite cardinality (Coghill, 1996;

Shen, 1991). At the other end of the precision spectrum is a single quantity which covers

the complete real number line, although this is not very useful as all mathematical op-

erations on this quantity space give the same result. The simplest usable quantity space,

termed the signs, therefore is{+ 0 -} which has a cardinality of three. The signs can also

be used to specify the derivative information of a variable in a dynamic system, this infor-

mation helps to describe how the variable changes over time.This simple representation

is very useful in determining behaviours, although something in between purely quali-

tative and purely numerical is sometimes desired when thereis more precise numerical

information available, yet not enough to carry out a numerical simulation. As such, some

qualitative reasoners use quantity spaces with more precise numerical information than
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the signs; for example QSIM (Kuipers, 1986) uses ordinal relations defined by landmark

values and intervals between the landmarks. Fuzzy sets (Zadeh, 1965) are an alternative

method to analysing complex systems with imprecise or ambiguous information (Zadeh,

1973). The desire to combine both qualitative reasoning andfuzzy numbers was the main

motivation for a new type of reasoner (Shen and Leitch, 1993;Coghill, 1996). Fuzzy

numbers are used to define quantity spaces allowing a degree of ambiguity to be inherent

in models.

To be able to predict the behaviours of a system, some method of defining it is required.

A qualitative model is used to define all of the variables of a system to reason about and

how the variables relate to one another. Constructing thesequalitative models requires a

decision to be made be made about what ontology will be used before proceeding. The

next section discusses the ontologies used in the field of qualitative reasoning.

2.2 Ontologies

An ontology is a representation of how one perceives the world, therefore the language

used to define this world is often called the ontology. There are three common ontologies

used in qualitative reasoning, each of which are briefly summarised below.

2.2.1 Process-Oriented Ontology

The process oriented ontology was first developed by Forbus (Forbus, 1981). The process

oriented ontology was originally developed as an implementation of Hayes’ Naı̈ve physics

(Hayes, 1979, 1985). The motivation behind this approach was to create models of steam

plants and other similar engineering systems. This type of system can be described by the

processes which exist or are created and how they directly orindirectly influence entities

within the system. For example, if there is a radiator in a room which is turned on then
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there is a heat source causing the process of heat flow from theradiator to all objects in

the room causing their temperature to raise. Forbus first proposed Qualitative Process

Theory (Forbus, 1984) using the process centred ontology and later went on to develop

the Qualitative Process Engine (Forbus, 1990). This ontology has also been utilised in

other systems, including a model-based planner based on processes known as Excalibur

(Drabble, 1993)

2.2.2 Device-Oriented Ontology

In the device oriented ontology models are described by interconnected devices inter-

acting via lossless ports. It lends itself very well to electrical circuitry where electrical

components can be thought of as the devices and the wires connecting them can be ap-

proximated by the interconnecting ports. The motivation behind this method was to create

engineering models which have a degree of re-usability and hence can be used hierarchi-

cally. The first reasoner to use this approach was Envision (de Kleer and Brown, 1984)

although several since have also been developed including AutoSteve (Price, 2000) which

uses Failure Modes and Effects Analysis (FMEA) as used in Flame (Price et al., 1995)

and the Jacquard project (Hunt et al., 1993).

2.2.3 Constraint-Oriented Ontology

In this approach models are created using constraints basedon ordinary differential equa-

tions which are abstracted for use qualitatively; these aretermed Qualitative Differential

Equations (or QDEs). The motivation behind this approach isthat almost any system can

be described using a set of equations and it offers a similar modelling approach to tra-

ditional numerical simulation. The Qualitative Physics Compiler (Crawford et al., 1990)

was developed to translate QPT models based on processes andcompile a set of con-

straints for use in QSIM thus showing that it is possible to use the constraint-oriented
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ontology to model processes. The most famous constraint based qualitative reasoner is

QSIM (Kuipers, 1986) which will be described in more detail in section 2.6. Many other

systems have followed this approach including FuSim (Shen and Leitch, 1993) and Mor-

ven (Coghill, 1996) (the predecessor to JMorven).

2.3 Modes of Operation of a Qualitative Reasoner

To aid analysis of qualitative behaviours, qualitative states are used. A qualitative state

can be thought of as a snapshot of the behaviour of the whole model at an instant or

interval in time. The current values of all variables make upthe qualitative state. For

example, a model with three variables A, B, and C may exhibit the following qualitative

state:

A: +

B: -

C: 0

For this example, there would be at most 27 possible unique states, however not all are

guaranteed to be consistent with the model.

Variables in a model can be separated into two categories, endogenous variables (also

known as system variables) and exogenous variables. Endogenous variables are those

which are internal to a model or those which the user has no direct control over, for

example the heat inside an oven. An exogenous variable is external to the model and can

be directly controlled, for example the temperature knob ofthe oven.

Imprecise information occurs when the exact values of variables or system parameters are

not known; instead ranges of values, or qualities, are used to represent all possible values
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which the variables or parameters may take. Incomplete information occurs when there

is an entity that is incompletely known; often this is the relationship between variables.

In this case, monotonic functions can be used which do not require precise detail about

the relationship between two variables - these are discussed more in section 2.6.2. Qual-

itative reasoning predicts the behaviour of systems with this imprecise and incomplete

information. As such, there are many behaviours predicted for these systems. This sec-

tion summarises the different modes of operation of a typical constraint-based qualitative

reasoner.

2.3.1 Qualitative Analysis and Transition Analysis

There are two main stages of a typical qualitative reasoner;these are Qualitative Analysis

(QA) and Transition Analysis (TA) (Williams, 1984b). During the Qualitative Analysis

phase all values of variables are analysed and checked for consistency with the model and

the consistent values are then used to generate qualitativestates. How this is achieved

depends on the implementation; a selected few are discussedlater in this chapter. The

Transition Analysis phase involves determining the transitions that are possible between

the qualitative states. This phase may, or may not be executed depending on the mode of

operation required from the qualitative reasoner.

2.3.2 Directed Graphs

There are a few different structures that are used to represent the predicted behaviours of

systems, for example trees and graphs. The one used in JMorven is a directed graph so a

brief outline of the directed graph is given here.

A directed graph is a structure which contains nodes and directed edges. Nodes in the

graph are used to represent qualitative states in a qualitative reasoner and the directed
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edges are used to indicate a transition from one state to another in the direction specified.

Directed graphs have an advantage in that they can contain cyclic behaviours therefore

infinite behaviours from oscillations can be represented and occupy very little memory.

Self-transitions are used to dictate that a state may transit to itself; this is typical for most

states apart from those that pass through a landmark or real number.

2.3.3 Envisionments

An envisionment is an exhaustive list of all the of the qualitative states a model may exist

in. There are two main types of envisionment which are discussed below. Simulation is

often termed an attainable or partial envisionment; this isdiscussed in section 2.3.4.

2.3.3.1 Total Envisionment

A total envisionment is used to determine every possible state a model may exist in for

all values of the exogenous variables. The total envisionment may be useful to determine

what possible states can occur from a given model. The numberof states quickly ex-

pands with the complexity of the model or cardinality of the quantity spaces used, thus a

complete envisionment is often used.

2.3.3.2 Complete Envisionment

Complete envisionments are very similar to total envisionments in that they display all of

the possible states a model may exist in, however they have anadditional constraint in

that some or all exogenous variables are specified which greatly reduces the complexity

of the directed graph. This is a useful tool as all the possible states can be viewed for a

system when the inputs to the system are known or can be specified.
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2.3.4 Qualitative Simulation

Qualitative simulation is a step-by-step operation which predicts all qualitative behaviours

of a model from a given initial state. Qualitative simulation is usually performed using

asynchronous simulation or event-drive simulation. An initial state is required for simula-

tion to take place although this does not need to be a fully specified state (if the state is not

fully specified similar problems to the total envisionment arise with the complexity of the

calculated directed graph). All possible transitions are calculated from the initial state to

determine all of the successor states. Simulations can be performed in a similar manner to

depth-first search or breadth-first. In a breadth-first manner the successor states are then

used to calculate all transitions for the next level of successor states whereas a depth-first

search expands one successor state at a time at each level. The simulation carries on until

a limit is reached or once all states reach an equilibrium (orsteady) state. It is worth not-

ing that a simulation carried out with an empty initial statewould provide similar results

to a total envisionment in that all possible states would exist in the directed graph.

2.4 Constructive vs Non-constructive Methods for Simu-

lation

There are several different methods for carrying out simulations in QR which can be split

into two main categories. These two categories are termed constructive methods and non-

constructive methods (Wiegand, 1991) depending how the constraints are used. The two

methods are discussed below with a description of the technique and a discussion of some

of the advantages and disadvantages associated with each.
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2.4.1 Constructive Simulation

Constructive algorithms are defined as ones that generate the the values of the endoge-

nous variables directly from the model definition. This is achieved by using the system

equations and integration techniques to predict successorvalues to the endogenous vari-

ables and using the model to construct the remaining variables’ values. The values of all

variables are constructed during the process hence the termconstructive simulation. The

most common method of integrating the dynamic equations is to use Euler integration

which is the same as first order Taylor Series expansion as shown below:

x(t + δt) = x(t) + ẋ(t).δt

This formula generates the value ofx at timet+ δt based on the value ofx and its deriva-

tive at timet with a given time step ofδt. This integration is carried out for all system

variables resulting in the successor values for all magnitudes of the variables on the left

hand side. Once this stage is complete the model equations are then utilised to construct

the values of the remaining variables and derivatives. The drawbacks of this approach are

that the system equations must be specified in a specific form similar to ordinary differen-

tial equations and these equations must be causally ordered. This is not always possible as

ordering may be impossible due to algebraic loops. This method will therefore not work

when algebraic loops appear in the model. Algebraic loops arise when the value of one

variable cannot be computed as it itself must be used to calculate the successor values, for

example in the system of equations below (taken from (Cellier, 1991) and simplified by

removing all equations extraneous to the algebraic loop)u3 cannot be calculated due to

the algebraic loop.
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u3 = U0 − u1

u1 = R1 ∗ i1

i1 = i2 + i3

i3 =
u3

R3

The loop here is found asu3 appears on the right hand side of the equation for solvingi3.

i3 is required to compute the value ofi1 which is required to find the value ofu1. Finally

u1 is required to compute the value ofu3 therefore an algebraic loop exists and cannot be

dealt with by a normal constructive approach. Algebraic loops occur in many different

areas including electrical circuits as described above, biological systems (de Jong et al.,

2003) and diagnosis (Mosterman et al., 2000).

2.4.2 Non-Constructive Simulation

An alternative approach is to adopt a non-constructive method for simulation. This tech-

nique involves generating all possible values that variables may take and using the model

equations to discard all inconsistent values. This can be achieved by using integration

or predefined transition rules based on integration and the system equations to filter out

inconsistent values.

The next stage involves filtering out tuples which are inconsistent with the remaining

constraints, i.e. for a tuple to be consistent with the model, it must be consistent with all

of the constraints individually. This method does not require any specific type or ordering

(Iwasaki and Simon, 1986) of equations making it simpler to produce usable models. The

main advantage of using non-constructive methods is that models with algebraic loops

can be analysed.
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It has been shown that constructive approaches and non-constructive approaches to simu-

lation give the same results in qualitative reasoning (Coghill, 1996; Coghill and Chantler,

1999). In the non-constructive method all behaviours are generated and then tested for

consistency with the constraints, however in a constructive algorithm the system variables

are propagated and then used to calculate all of the remaining variables in the constraints.

This essentially produces the same output as the constraints are responsible in both cases

for determining whether to keep or discard certain behaviours. With this in mind, it is

clear that a non-constructive algorithm has advantages in that it produces the same output

but it can also cope with algebraic loops and also does not require any prior ordering of

the constraints.

To demonstrate how a non-constructive system can deal with an algebraic loop, the ex-

ample from the previous section is used. If it is known thatR1 = 1kΩ, R3 = 20kΩ,

U0 = 60v andi2 = 7.5mA thenu3 can be calculated as follows:

assume a large range for the unknown values

i3 = [0 1036]

i1 = [0 1036]

u1 = [0 1036]

u3 = [0 1036]

now loop through the constraints

i3 = [0.0000 5.0000001268882145 ∗ 1025]

i1 = [0.0075 5.0000001268882145 ∗ 1025]

u1 = [7.5000 5.0000000752373311 ∗ 1028]

u3 = [0.0000 52.5000]
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looping again through the constraints gives:

i3 = [0.0000 0.0026]

i1 = [0.0075 0.0101]

u1 = [7.5000 10.1250]

u3 = [49.8750 52.5000]

it is clear at this point that the values are rapidly converging, another loop through the

constraints gives:

i3 = [0.0025 0.0026]

i1 = [0.0100 0.0101]

u1 = [9.9937 10.1250]

u3 = [49.8750 50.0062]

which gives very narrow ranges. Continuing the loops 3 more times gives us exact num-

bers as shown:

i3 = [0.0025 0.0025]

i1 = [0.0100 0.0100]

u1 = [9.9937 10.0003]

u3 = [49.9997 50.0062]
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i3 = [0.0025 0.0025]

i1 = [0.0100 0.0100]

u1 = [10.0000 10.0003]

u3 = [49.9997 50.0000]

i3 = [0.0025 0.0025]

i1 = [0.0100 0.0100]

u1 = [10.0000 10.0000]

u3 = [50.0000 50.0000]

This shows that within 4 iterations of the constraints the values of unknown variables had

been calculated to within approximately 1% of the correct value and that after 7 iterations

the exact value was calculated (to within the precision of 32-bit floating point numbers).

2.5 Existing Qualitative Reasoning Engines

Over the past twenty years a lot of research has been undertaken in the area of qualitative

reasoning resulting in several qualitative reasoning engines. Forbus’ main influence was

simulation of engineering systems, in particular steam plants which led to the develop-

ment of the Qualitative Process Engine (Forbus, 1990) basedon his Qualitative Process

Theory (Forbus, 1984). As mentioned previously, this reasons about processes and how
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they directly or indirectly influence objects in a model. This has been used in several dif-

ferent environments including model-based planning (Drabble, 1993) and ecology (Salles

and Bredeweg, 2003).

CA-EN (Bousson and Travé-Massuyès, 1994) is a constraint-based qualitative reasoner

which conducts synchronous simulations, i.e. those that are driven by a regular time-step.

CA-EN can reason with causes and constraints by using two coupled levels of constraints.

The global constraints level defines all of the constraint equations and the local constraint

level is used to indicate processes as in QPT. Variables in CA-EN are expressed as either

a real interval or a symbol depending on the available information. What results is a

simulation algorithm which can reason with multiple degrees of imprecision and produces

output envelopes for the simulations. The main disadvantage with this approach however

is that it uses constructive methods.

Order of magnitude reasoning (Raiman, 1991) extends traditional qualitative reasoning

techniques by determining the relative sizes of expressions, that is whether two expres-

sions are approximately the same, or one is slightly larger,larger, or much larger than the

other (and similar for smaller). This was applied to severaldifferent models and found

to aid the qualitative descriptions to provide a better output. There have been several

extensions to basic order of magnitude reasoning, including Raiman’s own FOG , O(M)

(Mavrovouniotis and Stephanopoulos, 1988) and CHEPACHET (Davis, 1990). Another

extension to order of magnitude reasoning has been implemented in the CA-EN simula-

tor described above which uses fuzzy numbers to depict how two variables’ magnitudes

relate to one another.

Another very popular qualitative reasoning package is QSIMwhich has influenced the

development of many others including FuSim and Morven. QSIMis discussed in more

detail in the next section.
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2.6 Qualitative SIMulation (QSIM)

QSIM is one of the most developed qualitative reasoning packages. In this section, QSIM

and its features are discussed since it is the predecessor toParallel QSIM - a parallel

implementation of QSIM which is critically evaluated in this thesis. Also, JMorven has

some features which have evolved from QSIM through the intermediate systems FuSim

and Morven.

2.6.1 Introduction to QSIM

QSIM was first developed in the early 1980s by Kuipers (Kuipers, 1986) and was one

of the first qualitative reasoners to use the constraint based ontology. These constraints

are specified in a special form of mathematical differentialequations abstracted for use

qualitatively, termed Qualitative Differential Equations or QDEs. The motivation behind

using constraints in this form was that engineering and dynamic systems could be easily

modelled using these types of equations just as differential equations would be used for

numerical simulation. QDEs are discussed in more detail in the next section. Kuipers

guarantees that QSIM will find all the possible qualitative behaviours for a system but

extraneous behaviours may also be included hence the QSIM algorithm is complete but

unsound.

2.6.2 Qualitative Differential Equations

Qualitative Differential Equations (QDEs) are an abstraction of ordinary differential equa-

tions (ODEs). Variables in a QDE are the qualitative equivalent to the numerical variables

of the corresponding ODE. A typical ordinary differential equation is shown

mẍ = F − kx
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wherex is displacement of a massm from its rest position,̇x denotes the velocity of

the mass,̈x represents the acceleration of the massF is the external force applied to

the mass andk is the stiffness of the spring. This is an equation for a simple harmonic

motion mass-on-a-spring system. To generate a QDE equivalent, the variablex would be

qualitative instead of quantitative as in the ODE (see the next section for more information

about qualitative values in QSIM). Also QSIM requires constraints to be specified as

two or three place predicates. The following set of qualitative differential equations are

equivalent to the ODE above (assuming unit mass and unit spring stiffness):

D/DT (A, X)

D/DT (B, X)

MINUS (C, X)

ADD (B, F, C)

Some systems do not have enough known information to model them using strict quanti-

tative functional relations therefore QSIM also defines monotonic function constraints. A

monotonically increasing function is whose derivative is positive for all values therefore

if one variable increases the other is guaranteed to increase. Similarly for monotonically

decreasing functions whose derivatives are always negative. These are defined in QSIM

as follows:

M+(P, Q)

M−(Q, R)

To add extra numerical information to the QDEs, QSIM defines corresponding values.

These are when a variable is known to be at a certain value, thevalue of another variable

or variables may be explicitly stated. This extra information can help reduce the number

of spurious behaviours generated. For example, in monotonic functions it is often found
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that (0, 0) is a valid corresponding value stating that when one of the variables in the

monotonic constraint is0 then the other must also be0. Although this example shows

the use of corresponding values in a monotonic constraint, they can be used in any type

of constraint. Some work has also been undertaken into usingintervals as corresponding

values (Say and Kuru, 1993).

2.6.3 Qualitative Variables

Qualitative variables in QSIM are of the form of a〈qmag, qdir〉 pair, whereqmag denotes

the qualitative magnitude of the variable andqdir is the qualitative direction of change

or derivative of the variable. The direction of change of thevariable can take one of

three possible values,inc, dec or std, which represent increasing, decreasing or steady

respectively. The possible values of the magnitude depend on how the quantity space

is defined. A quantity space in QSIM is an ordered list of possible landmark values

l1 < l2 < ... < lk which represent qualitatively important values. Some landmarks may

be pre-defined for the model, and new landmarks can be added during simulation. The

variable magnitudes may take the value of one of these landmarks or an interval (a range

between two landmarks denoted by]lj , lj+1[). The simplest quantity space, the signs, is

defined by three landmark values,−∞, 0, +∞. All negative values lie in the interval

(−∞, 0[ and all positive values lie in the interval]0, +∞). Time also adheres to this

landmark representation where temporal landmarks are created at times when variables

change to or from a landmark. Landmarks may also be created during the running of a

simulation in QSIM when variables reach important behaviours, e.g. a turning point.

QSIM generates Qualitative States at all time points and intervals. States consist of the

values for all of the variables in the model at the given time.These states along with the

transitions between them form the qualitative behaviours of the simulation in the form of

a behaviour tree. How these transitions are defined is discussed in the next section.
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P-transitions QS(v, ti) QS(v, ti, ti+1) I-transitions QS(v, ti, ti+1) QS(v, ti+1)
P1 < lj , std > < lj , std > I1 < lj , std > < lj , std >

P2 < lj , std > < (lj , lj+1), inc > I2 < (lj , lj+1), inc > < lj+1, std >

P3 < lj , std > < (lj−1, lj), dec > I3 < (lj , lj+1), inc > < lj+1, inc >

P4 < lj , inc > < (lj , lj+1), inc > I4 < (lj , lj+1), inc > < (lj , lj+1), inc >

P5 < (lj , lj+1), inc > < (lj , lj+1), inc > I5 < (lj , lj+1), dec > < lj , std >

P6 < lj , dec > < (lj , lj−1), dec > I6 < (lj , lj+1), dec > < lj , dec >

P7 < (lj , lj+1), dec > < (lj−1, lj), dec > I7 < (lj , lj+1), dec > < (lj , lj+1), dec >

I8 < (lj , lj+1), inc > < l∗, std >

I9 < (lj , lj+1), dec > < l∗, std >

Table 2.1: Transition Rules in QSIM

2.6.4 Transition Rules

To define how Qualitative States transit between one anotherto create Qualitative Be-

haviours, QSIM defines a list of transition rules. These transition rules adhere to the

Intermediate Value Theorem and the Mean Value Theorem from Calculus (Spivak, 1967).

These continuity constraints dictate that for a variable totransit from one value to an-

other, it must pass through all intermediate values. Valid transitions for a variable depend

on whether the current time is at an interval or a landmark. Table 2.1 shows transition

rules as defined in QSIM for a continuous functionv with landmarkslj−1 < lj < lj+1.

P-Transitions signify transitions from a time point to an interval and I-Transitions denote

transitions from a time interval to a point. This is effectively qualitative euler integration,

for example, if variablex is increasing then the transition rules state that the successor

value ofx will be a quantity greater than the current one (or ifx is an interval the suc-

cessor value may be the same interval or the next greater landmark). The intermediate

value theorem ensures that the successor quantity is that which is immediately greater to

the current quantity before transition to any other quantities.

2.6.5 QSIM Algorithm

The QSIM algorithm aims to generate all consistent qualitative behaviours from the

model, consisting of QDEs, and an initial state. QSIM is a type of constraint satisfac-

tion problem solver which solves a constraint network of variables and their domains,

or quantity spaces, across a number of constraint relationsin the from of QDEs. The
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output from the QSIM algorithm is a behaviour tree consisting of all possible qualitative

behaviours from the initial state. QSIM achieves this by analysing the initial state and

determining all possible successor states by applying the transition rules and checking

consistency with the equation constraints. These states are then analysed and their suc-

cessor states are generated, continuing until no more states are left to analyse. Successor

states are not computed for states that satisfy the following conditions:

• The current state is identical to a previous state resultingin the same successors

thus avoiding an infinite cycle.

• The current state is a transition state i.e. one that is defined during the transition

from one state to another

• The current state is an equilibrium or quiescent state, i.e.one that has no possible

unique successor states due to all qualitative directions being steady.

• The current time ist = ∞

In the QSIM algorithm described above, the state transitions are constrained by the tran-

sition rules and the generated qualitative states are constrained by the qualitative differen-

tial equations of the model. This latter constraint filter issplit into two sub-components

termed the Tuple Filter and Waltz Filter which are discussedbelow.

2.6.5.1 Tuple Filter

The Tuple Filter in QSIM iterates through a number of tuples provided to check the con-

sistency with the constraints. It achieves this by going through each constraint in turn.

Each constraint generates an exhaustive list of all possible tuples and discards any that are

inconsistent. Tuples which remain are therefore consistent with that individual constraint.
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2.6.5.2 Waltz Filter

The Waltz Filter in QSIM is actually an AC-3 implementation (Mackworth, 1977) rather

than a pure Waltz algorithm (Waltz, 1975). This is a pairwisefilter which executes on

each possible pair of adjacent constraints (two constraints which share a common vari-

able are said to be adjacent). All tuples are checked for consistency and if found to be

inconsistent with either constraint they are discarded. InQSIM, the Waltz filter is exe-

cuted incrementally - after each constraint is checked withthe tuple filter, the Waltz filter

acts on the set of tuples. This causes some of the tuples of a constraint to be discarded

before the tuple filter is again executed thus allowing a slight performance increase.

2.6.6 Form All States

Once all tuples have traversed the constraint filter they areprocessed to create qualitative

states, this is the function of the ‘Form All States’ stage. These qualitative states are

guaranteed to be consistent with the tuples and are used to create qualitative behaviours

following the transition rules. QSIM uses a backtracking algorithm which performs a

depth-first search. This recursively calls itself with the next constraint if a tuple is found

to be consistent with the partial state. Once the final constraint is reached and a tuple is

consistent a solution is found in the form of a qualitative state.

2.6.7 Global Filters

As described above QSIM uses constraints in the form of QDEs and transition rules to

filter qualitative behaviours which are carried out per-constraint or per-transition. The

addition of Global Filters allows QSIM to add constraints which can be applied over a

whole qualitative behaviour. One of the most common global filters is one which ensures

the law of conservation of energy is not broken (Fouche and Kuipers, 1992). Qualitative
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simulation may break this law, e.g. a spring without any external forces may exhibit

a behaviour that the amplitude of oscillations increases which is not possible in reality.

This global constraint forces these oscillations not to increase thus observing the law of

conservation of energy.

2.6.8 Extensions to QSIM

QSIM is one of the most popular qualitative reasoning engines available and as such a

lot of further research has gone into expanding it. There aremany extensions to QSIM

which have been developed to add extra functionality or reduce the number of spurious

behaviours. Some of these extensions filter out too many behaviours and impinge on the

completeness of the QSIM algorithm resulting in not all realbehaviours being included

in the simulations. It is beyond the scope of this thesis to detail all of the many extensions

to QSIM, the reader is directed to (Kuipers and Chui, 1987; Lee and Kuipers, 1988, 1993;

Fouche and Kuipers, 1991; Hossain and Ray, 1997; Hofbaur andDourdoumas, 2001) for

further reading.

One type of extension to QSIM which is of interest to the studyof this thesis are the

development of semi-quantitative and interval based extensions for example NSIM (Kay

and Kuipers, 1992), Q2 (Kuipers and Berleant, 1988), Q3 (Berleant and Kuipers, 1990),

QuaSi (Bonarini and Bontempi, 1994a), SQSIM (Kay, 1998) andDecSIM (Clancy and

Kuipers, 1998). Some of these are discussed in more detail inchapter 5.

2.7 Summary

In this chapter, the field of Qualitative Reasoning has been introduced with the aims and

motivations behind it. These include the ability to reason about models when only im-

precise or incomplete knowledge is available about either the model structure and/or the
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parameters of the model. Several strategies for accomplishing this have been implemented

from the research undertaken. These differing methods havebeen discussed and it is pro-

posed that the constraint centred approach offers the most flexibility as a representation

for defining models. As such, efforts have been concentratedon existing qualitative rea-

soning engines that adopt the constraint ontology including the popular QSIM. QSIM has

been reviewed as it is a direct influence of several of the engines discussed in thesis includ-

ing Parallel QSIM, the only known existing parallel qualitative reasoning implementation.

The review follows a discussion of the differing modes of operation that qualitative rea-

soning offers including envisionments and simulation. Total and complete envisionments

provide a representation of the global behaviours of a system or subset of all behaviours

by fixing the values of exogenous variables whereas simulation generates the possible

behaviours for specific initial states. Constructive and non-constructive approaches to

qualitative reasoning were discussed and it is argued that non-constructive approaches of-

fer an advantage in that they are more general in that they do not impose causal ordering

on the model constraints and can reason with models that contain algebraic loops.



Chapter 3

Parallel Qualitative Reasoning

3.1 Introduction to Parallel Computing

Modern computing allows an easy and inexpensive means of combining the power of

several processors or computers to be used to run the same process. This allows execution

times of these processes to be drastically reduced. A lot of research has been undertaken

into developing parallel algorithms for many tasks, and as such there are many standard

means of comparing parallel algorithms. Leighton (Leighton, 1992) describes the speed-

up,S, as the time taken for the best sequential algorithm to complete over the time taken

for the best parallel algorithm to complete. The speedupSn for an algorithm running on

n processors is defined as:

Sn =
t1

tn

whereS1 is the sequential time andSn is the time taken to run onn processors. The

efficiency of a parallel algorithm is defined as:

E =
Sn

n
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The optimal speed-up of an algorithm is termedLinear Speed-up. This is when the effi-

ciency of the algorithm is constant for alln, i.e. whenE = 1. Although the theoretical

optimal speed-up for an algorithm is linear, it is not trivial to achieve. In fact, it is often

only possible to achieve speed-up whereE decreases asn increases.

To benefit from parallelisations, the tasks to be implemented must not be inherently se-

quential for example depth-first search (Reif, 1985). Thereare two main techniques for

generating a parallel implementation of a given task, theseare known as data parallelisa-

tions and algorithmic parallelisations. A good example describing the process between

data and algorithm parallelisations is presented by (Greenlaw et al., 1995) which describes

generating an algorithm for sorting. The obvious way to do a sort on dataD onn proces-

sors is to split the data into smaller subsets,dx, such that

∀x∈1,n : dx ⊂ D

d1 ∪ ... ∪ dx ∪ ... ∪ dn = D

and then sort each subset on its own parallel processor. Thisis an example of data paral-

lelisation. The problem with this approach is that after each processor has executed, each

subset is indeed sorted; however the subsets must be combined to create the sorted set

D. Using similar approaches to generate larger subsets untilthe full set is sorted achieves

only a marginally better time than the sequential algorithm, therefore an algorithmic par-

allelisation should be used instead. One such method to do this involves ranking each

item to be sorted. The rank can be computed by assigning each parallel unit to a pair

of numbers and scoring the entries depending on which is greater. All possible pairs are

evaluated resulting in a rank for each entry which can then beused to order the entries

in one pass. The interested reader is directed to (Greenlaw et al., 1995) for a detailed

discussion of an efficient method of sorting a dataset in parallel.
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3.2 Qualitative Reasoning and Parallel Processing

There has been very little research on implementing parallelisations in qualitative reason-

ing specifically; the only major work carried out to date is that of Platzner and Rinner

(Platzner et al., 1997) which is discussed in more detail in section 3.3. However it is

worth investigating existing research undertaken in parallelisations used to speed-up sim-

ilar algorithms that have been used in qualitative reasoning in the past. Since QSIM has

been recognised as a type of Constraint Satisfaction Problem (or CSP) solver (Clancy and

Kuipers, 1998) it is worth discussing some work undertaken into parallelising CSPs.

Constraint-based qualitative reasoning can be considereda Constraint Satisfaction Prob-

lem of 〈V, D, P 〉 where:

• V = v1, ..., vn is the set of variables of the CSP

• D = D1, ..., Dn is the set of domains whereDi holds a set of possible values for

variablevi

• P = P1, ..., Pm denotes the set of constraint relations.Pj operates on a subset of

variables fromV such that all variables inV are constrained by at least one element

in P .

The qualitative reasoner attempts to find solutions of this CSP where:

• the setV represents the set of qualitative variables in the QDE

• di ∈ D is equivalent to the quantities a variablevi may take from the quantity space

• P is the set of constraints of the model.
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Three main classifications of parallel CSP algorithms were presented by (Luo et al., 1994)

which are briefly stated below. A summary of parallel units isgiven first. Parallel units are

disjoint computational nodes which independently solve a problem. Parallel units can be

central processing units, separate computers (or nodes) orvirtual processors as in Intel’s

HyperThreading technology.

• Distributed Agent Based (DAB) This is where the variables are distributed be-

tween parallel units. Due to constraints having multiple variables, there is a lot of

communication required between parallel units in this strategy.

• Parallel Agent Based (PAB)This is where the domains of the variables are dis-

tributed between parallel units. This effectively solves aCSP sub-problem and can

use any sequential CSP algorithm. No communication is necessary between parallel

units during execution.

• Function Agent Based (FAB)This is where functions which are repeatedly exe-

cuted can be distributed between parallel units. This requires the architecture to

have a shared memory type.

Of these strategies, the Parallel Agent Based method is the most common having been

used in many CSP implementations including (Lin and Yang, 1995a,b; Burg, 1990). The

PAB approach lends itself particularly well to QR due to its ability to find all solutions

of a CSP whilst requiring no communication between parallelunits and being able to use

any sequential CSP algorithm in each parallel branch. The splitting of the whole problem

into sub-problems by the domains of the variables makes sense too, the valid tuples of a

constraint can be used to create sub-CSPs.



3.3. Parallel QSIM 45

3.3 Parallel QSIM

Parallel QSIM was developed by Marco Platzner (Platzner, 1996) and Bernhard Rinner

(Rinner, 1996). The motivation behind their work was to create a more efficient im-

plementation of the popular QR package, QSIM, which was to beused as part of a larger

project,Distributed Real-Time Expert System for Fault Diagnosis inTechnical Processes1

(Rinner, 1996; Platzner, 1996; Platzner and Rinner, 1995, 1998, 2000; Platzner et al.,

1995, 1997). Platzner concentrated on designing and developing co-processors for inten-

sive calculations that were highly repetitive with the ideathat a hardware implementation

would increase the speed of execution greatly. To take advantage of the hardware and in-

crease efficiency, Parallel QSIM was developed in C. Rinner was responsible for creating

the parallel architecture which would be central to Parallel QSIM. Combining their work

resulted in an implementation of QSIM which was several orders of magnitude faster than

the original LISP implementation of QSIM. This section concentrates on the work of Rin-

ner and the parallel architecture of Parallel QSIM as this isthe area of most relevance to

the work undertaken for this thesis.

3.3.1 Design Choices

The design of the parallel architecture for Parallel QSIM was aimed at a hardware im-

plementation since concurrent research was being undertaken to develop coprocessors

to speed-up several highly repetitive calculations. An architecture was required which

would distribute computation between several parallel units which would each contain

one of these co-processors. Rinner’s aim was to develop a scalable parallel architecture

for the most computationally intensive stages of the QSIM algorithm. Scalability was

defined by Hwang (Hwang, 1993) as having three aspects:

1Project conducted at the Institute for Technical Informatics, Graz University, Austria.
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• Problem-size Scalability. This is when a parallel implementation should be able to

perform well with an increase in problem size, ideally linear - i.e. if a problemP1

executes in timet1 then a problem ofc times the complexityP2 should complete in

time t2 = c.t1

• Machine-size Scalability. For a system to be machine-size scalable, it should be

able to exhibit a near-linear speed-up in execution time forthe number of parallel

units available. i.e. Problems on a machine withn parallel units should taket = tseq

n

to complete2.

• Generation scalability. A system should be able to exhibit good speed-up on cur-

rent generation computers, but equally future generationsof computers should also

benefit from similar speed-ups.

Rinner acknowledges that his design does not address the problem of generation scalabil-

ity; this is due to the fact that since they use a dedicated hardware setup, there might not be

a future generation of hardware for their solution. Rinner considers machine-size scala-

bility as the main focus of his scalable design, and commentsthat problem-size scalability

is also considered.

After analysing the runtime of each stage in QSIM it was foundthat the constraint filter

dominates the running time of QSIM. This was then broken downto determine which

part of the constraint filter was most computationally expensive. It was found that the

execution times of each stage of the constraint filter depends on the mode of operation.

For initial state processing, which provides similar results to an envisionment without

transitions, the form-all-states stage was highly dominant, however during generation of

successor states, the tuple filter took most time to execute.Rinner therefore concen-

trated his efforts on parallelising the tuple filter and form-all-states stages of the QSIM

algorithm, both of which are discussed below. The tuple filter could also benefit from

2
tseq is sequential time, the time taken for a problem to complete on a sequential (non-parallel) system.
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the co-processors developed by Platzner as it required manyintensive calculations which

could be implemented in hardware.

3.3.2 Tuple Filter

The tuple filter and Waltz filter were combined in the originalQSIM algorithm. Rinner

devised the figure (shown in figure 3.1) showing the data dependencies of the incremental

tuple filter and Waltz filter. In the figurepvalsdenotes possible values for the variables

and the tuples are labelled astuples. The original idea behind this incremental filter was

Figure 3.1: Data Dependency of the Incremental Tuple Filterand Waltz Filters.
t-f denotes the Tuple Filter stages, W-f the Waltz Filter stages and f-a-s is the

form-all-states process. Each Tuple Filter has a constraint as an input and the dotted
lines indicate that the Tuple and Waltz Filters are executedsequentially.

that the Waltz filter would discard possible tuples, and future tuple filter stages would

have less to filter thus taking less time to execute. In order to parallelise the tuple filter,

Rinner decided to separate the incremental tuple and Waltz filters. The problem with this
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was that now the tuple filter would have more work to do since itwould have more tu-

ples to filter, however this was balanced by the fact that now the Waltz filter needs to be

executed only once. Figure 3.2 shows the data dependency of the sequential tuple filter

and Waltz filters. With this sequential tuple filter it can be clearly seen that there is no

t-f1 t-fi

W-f

t-fC

constraint1 constrainti constraintC

� �

pvals

tuples

Figure 3.2: Data Dependency of the Sequential Tuple Filter and Waltz Filters.
t-f denotes the Tuple Filter stages and W-f the Waltz Filter.

inter-dependency between constraints within the tuple filter. Since there is no data depen-

dency between the constraints, it is trivial to parallelisethe tuple filter - each parallel unit

simply executes each constraint in turn. The disadvantage with this is that the maximum

degree of parallelism is set by the number of constraints i.e. if there are fewer constraints

than available parallel units then the utilisation of available resources will be sub-optimal.

Rinner carries on to discuss scheduling algorithms for the tuple filter although it is not

clear why since the Parallel QSIM was developed for a specifichardware setup of equal

processors.
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3.3.3 Form-All-States

The Form-All-States stage takes as input, a set of valid tuples for each constraint in the

model and creates a solution which is a set of all possible solutions to the CSP. This differs

from traditional CSPs in that they often require merely one valid solution or a select few

rather than a complete set of all possible solutions.

Rinner summarises three common methods for distributing CSP algorithms, shown in

table 3.1. Rinner decided to use a PAB technique and partition the problem into sub-

distributed constraint satisfaction strategies
characteristics DAB PAB FAB

preferred problems naturally distributed tightly coupled tightly coupled
algorithm design specially designed any sequential any sequential
memory type shared / distributed shared / distributed shared
communication cost medium / high lower n / a
load balancing poor / fair good good
scalability poor fair / good reasonable
termination detection difficult easy easy
find a solution poor fair / good good
find more solutions poor good / excellent fair

Table 3.1: Characteristics of Basic Distributed CSP Strategies (Luo et al., 1994)

problems by generating sub-sets of tuples which are used to solve sub-CSPs. Each of

these CSPs can then be solved and the solution for the whole CSP is merely a union of

the solutions of all the sub problems.

3.4 Critical Analysis of Parallel QSIM

Platzner and Rinner admit to their implementation being a specific hardware architecture

(Platzner et al., 1995) which limits the usability of their work. To be used widely, a

software solution should be developed which is not limited to a specific hardware setup,

in other words the solution should be hardware-independentand portable. This would
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allow it to be run on a large variety of systems and hence be used for more problems.

Due to the hardware limitations, Parallel QSIM was only tested on up to seven parallel

units. Whilst the tests were largely successful, it would beinteresting to see how QR

scales up to more parallel units for complex problems. Any successor to Parallel QSIM

should determine how the efficiency of the algorithm behavesover a large range of parallel

units and should be compatible with a large number of systemsmaking it a more feasible

option.

It is apparent from the design of the Parallel QSIM architecture that machine-size scala-

bility has not been fully met. In (Platzner and Rinner, 2000)the seven processor test-bed

demonstrates only a speed-up of1.15 ≤ S7 ≤ 3.5 with the average speed-up reported

as less than̄S7 < 2. (This gives a maximum efficiency ofE ≤ 0.50 and an average of

E < 0.29 when running on seven processors.)

A runtime analysis shows that of the runtime of QSIM, the constraint filter occupies 80%

of the total execution. The tuple filter takes approximately70% of the constraint filter

time to execute which means that the Waltz filter takes approximately 24% of the total

execution time to complete. The Waltz Filter execution timewould become far more

apparent when the constraint filter and form-all-states arerun in parallel - for the seven

processor system, assuming a near-linear speed-up the Waltz Filter would run for nearly

90% of the total execution time. Even though this is the case,Platzner and Rinner have

not implemented a parallel version of the Waltz Filter. One reason this may be was that the

original QSIM algorithm uses an incremental Waltz Filter, and although Parallel QSIM

uses a type of sequential Waltz Filter, Platzner and Rinner report that they still use some

sort of incremental filtering once the result of one tuple filter is received (Platzner and

Rinner, 1995). If they were to lose the idea of this incremental Waltz Filter, and instead

implement a fully sequential one, further benefits of parallelisation should be apparent.

Any new implementation should parallelise all stages of thealgorithms including the

Waltz Filter.
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They concentrated on the qualitative analysis stages of QSIM. Parallelising the transition

analysis phase was not attempted, therefore any future parallel system should also attempt

to parallelise this stage.

These issues, combined with the limitations of QSIM itself,make it clear that there is

need for a new parallel qualitative reasoning engine for complex systems.
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Fuzzy Qualitative Reasoning

4.1 Introduction

Fuzzy computing offers a mathematical method of dealing with vagueness. Fuzzy num-

bers are ranges of numbers with an associated degree of membership which states how

much of a quality a given value has rather than binary ‘yes’ or‘no’. For example, if we

define the region between 5’6” and 6’ to be normal height for male adults, and 6’ to 6’6”

to be tall. If we have two men,A & B, whose height differs by half an inch such that

A is 5’11.75” andB is 6’0.25”. A would be considered normal height andB considered

tall, yet their heights are almost indistinguishable. Instead we can add some extra infor-

mative detail to the regions allowing both men to be classified in the same group. Figure

4.1 shows an example of the two regions discussed in normal mathematical terms and in

fuzzy terms. If we consider the fuzzy terminology and look athow ‘tall’ either is, then we

can see thatA is tall to a degree andB is tall. For this example, this is a much more infor-

mative description suggesting that both men are about the same height. It is worth noting

that members may belong to more than one group at a time, both men could equally well

be considered where they are placed in the ‘normal height’ group. It is this additional

information that becomes useful for systems where uncertainty needs to be dealt with.
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normal tall

5�6� 6�0� 6�6�

Height

Membership

normal tall

5�6� 6�0� 6�6�

Height

Membership

100% 100%

(a) (b)

Figure 4.1: Standard Mathematical and Fuzzy Ranges.
(a) shows two ranges for male adults with a crisp range from 5’6” to 6’0” for normal
height and 6’ to 6’6” for tall men. (b) shows an example fuzzy quantity space for the

same ranges.

Fuzzy sets are often mistakenly thought to be similar to probability distributions. The two

methods both approach the problem of likelihood. However, fuzzy sets can be thought of

as a representation for the degree of truth of a value, whereas probability deals with the

degree of belief of an outcome to occur. Probability distributions must combine to cover

all possibilities and are defined such that:

n
∑

i=1

Pi = 1

wheren is the number of all possible outcomes andPi is the probability of outcomei

occurring. There is no such constraint for fuzzy numbers.

Combining qualitative reasoning with fuzzy numbers has been the motivation for creat-

ing an inference engine which can cope with ambiguity and uncertainty better than either

approach alone. This chapter discusses two such engines: FuSim (Shen, 1991), an im-

mediate successor to QSIM, and Morven (Coghill, 1996)(formerly known as Mycroft)

which succeeds and improves on some of the shortcomings of FuSim by implementing

many features from a combination of inference engines and offers a different algorithmic

approach to solve the model equations. Only features that are used by JMorven are dis-

cussed, the interested reader is directed to the original works for a full discussion of all
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features. A brief discussion of another successor to Morven, SyNCSim, is also presented.

4.2 FuSim

FuSim (Shen, 1991) was developed as a successor to QSIM adding a fuzzy number repre-

sentation to the variables of the qualitative models. The motivation of this was to create a

system which could deal with ambiguity and imprecision better than a purely qualitative

or purely fuzzy approach. Fuzzy numbers allow a finite discretisation of the real number

line which ensures that variables have a finite number of possible qualitative values they

can take, and that the fuzzy numbers also cover the range of all possible values. These

two properties,FinitenessandCoverage, respectively, are necessary for qualitative rea-

soning. Another property required is that ofGranularity which is ensured by selecting

an appropriate arbitrary discretisation of the possible ranges of variables. Fuzzy numbers

offer a great advantage over crisp regions in that there is nolonger an abrupt change tran-

siting from one quantity to the next, instead the change is gradual which is closer to how

people think (Zadeh, 1975a,b, 1976). Another advantage to using fuzzy numbers is that

due to the semi-quantitative nature, the prerequsites for temporal calculations are readily

available in a numerical form therefore fuzzy numbers lend themselves better toward sim-

ulation than a purely qualitative approach. This was a motivation of Shen, in particular to

create a diagnosis system for continuous dynamic systems.

The following sub-sections describe certain features of FuSim that are of importance to

the subject of this thesis.

4.2.1 Fuzzy Four-Tuple Parametric Representation

Fuzzy numbers provide a so-calledsoft boundary for numeric regions, allowing a de-

gree of membership. These regions take shapes similar to probability distribution curves,
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although they have subtle differences. Figure 4.2 shows a diagram of an example fuzzy

region. It can be seen that the shape of the region is curved and not very efficient to imple-

Figure 4.2: Typical Fuzzy Number.

ment nor define arithmetic operations. To overcome this, a simpler representation is used

in FuSim which approximates the fuzzy number curve whilst still offering the benefits

of fuzzy membership. This representation is known as the Fuzzy Four-Tuple Paramet-

ric Representation and offers a much more efficient method toutilise fuzzy numbers. A

four-tuple is described using four valuesa, b, α andβ which define the fuzzy number as

shown:

µA(x) =
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

0 x < a − α

α−1(x − a + α) x ∈ [a − α a]

1 x ∈ [a b]

β−1(b + β − x) x ∈ [b b + β]

0 x > b + β

This is shown graphically in figure 4.3. This representationmakes it possible to describe

real numbers, real intervals, fuzzy numbers and fuzzy intervals very easily.
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Figure 4.3: Fuzzy Four-Tuple Parametric Representation.

4.2.2 Fuzzy Quantity Spaces

Variables have a domain of quantities from which they can take their values, known as

a quantity space. A quantity space in FuSim is a set of convex fuzzy values spanning

a region of the real number line, as shown in figure 4.4. Usually the quantities in the

Figure 4.4: Fuzzy Quantity Space.

quantity space overlap giving some degree of ambiguity. Variables can adopt their own

associated quantity space and can have different quantity spaces for the magnitude and

derivative. The granularity of the quantity space dictatesthe number of possible tuples that

are valid for a constraint; increasing the number of quantities results in a larger number

of states being produced which takes longer to calculate. However, this provides more

detailed information about the states. It is worth noting that the signs can be defined by

the quantity space shown in table 4.1
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Quantity a b α β

- −∞ 0 0 0
0 0 0 0 0
+ 0 ∞ 0 0

Table 4.1: The Signs Quantity Space

4.2.3 Fuzzy Arithmetic in FuSim

To be able to use fuzzy quantities in the constraints, a set ofarithmetic operations need

to be defined. Table 4.2 shows the definition of arithmetic operations used within FuSim.

With the common arithmetic operations defined, it is possible to calculate resulting fuzzy

quantities from the constraints. The next section describes how this result is then used to

determine which fuzzy quantities are used from the quantityspace.

Let: m = [a, b, τ, β], n = [c, d, γ, δ]
Operation Result Conditions
−n (−d,−c, δ, γ) all n
1
n

(

1
d
, 1

c
, δ

d(d+δ)
, γ

c(c−γ)

)

n >0 0, n <0 0

m + n (a + c, b + d, τ + γ, β + δ) all m, n

m − n (a − d, b − c, τ + δ, β + γ) all m, n

m × n (ac, bd, aγ + cτ − τγ, bδ + dβ + βδ) m >0 0, n >0 0
(ad, bc, dτ − aδ + τδ,−bγ + cβ − βγ) m <0 0, n >0 0
(bc, ad, bγ − cβ + βγ,−dτ + aδ − τδ) m >0 0, n <0 0
bd, ac,−bδ − dβ − βδ,−aγ − cτ + τγ) m <0 0, n <0 0

Table 4.2: Arithmetic primitives used in FuSim

4.2.4 α-cuts

α-cuts are used in FuSim to generate a crisp quantity from a fuzzy quantity. Anα-value is

used to dictate the cut-off point for the conversion. Any point in the fuzzy quantity above

this α-value is converted to the crisp quantity. Anα-value of 0 means that the whole

range of the fuzzy number is used, i.e. froma − α to b + β whereas anα-value of 1

means that only the region froma to b is used. FuSim uses anα-value that is is greater

than all the crossing points of adjacent quantities in the quantity space. This ensures that
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no crisp quantities overlap and therefore the temporal calculations remain positive.α-

cuts represent the idea of typicality by dictating the minimum membership of a quantity

for it to be considered a member which narrows the overall range of a fuzzy number.

Figure 4.5 shows a quantity space with and without theα-cut. α-cuts are also used in the

approximation principle to reduce the number of possible consistent values a calculated

fuzzy interval may be approximated to. See the next section for more information.

100%

(a)

(b)

R

R

membership

Figure 4.5: Taking the Alpha-cut of a Quantity Space
(a) shows a typical fuzzy quantity space and the alpha-cut value to take. (b) shows the

result of taking the alpha-cut of the quantity space.

4.2.5 Approximation Principle

When a constraint is evaluated it is likely that the calculated fuzzy result will not be ex-

actly equal to a quantity from the associated quantity space. In this case, theApproxima-

tion Principleis used to determine which quantities from the quantity space the calculated

value corresponds to. The approximation principle states that the calculated value can ap-

proximate by any quantity in the quantity space that overlaps with it. To ensure that no

excessive values are included, all quantities and the calculated value are restricted to a
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crisp interval using theα-cut. Figure 4.6 shows an example of the approximation prin-

ciple. It can be seen that the calculated value overlaps withthe second, third and fourth

quantities in the quantity space, therefore each of these quantities are added to the possible

values for the calculation.

Calculated Value

Quantity Space Values

membership

R

Figure 4.6: The Approximation Principle.

4.2.6 Fuzzy Derivatives

FuSim uses fuzzy quantities for the derivatives of a variable as well as the magnitude.

This extra information allows temporal calculations to be made more easily offering a

more informative output than using merely the purely qualitative direction of change as

in QSIM. Derivatives take on fuzzy values from the quantity space in the same way as

the magnitude. With a purely qualitative representation a variable may be known to be

increasing, but this could be very slowly or very fast. With the extra information from

the fuzzy values it is possible to see how quickly it is changing allowing more precise

simulation results.
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4.2.7 Function Constraints

QSIM uses monotonic functions to describe the behaviour between two or more variables

when the exact mathematical relationship is not known. Whilst this is useful, it is a

weak representation especially when it is possible to have the extra information in the

form of fuzzy values. FuSim uses Functional Constraints which allows any mapping of

possible values for one variable to be consistent with another. This can vary from linear

relationships to complex non-linear ones. This addition allows a stronger relationship

between variables without knowing the exact mathematical relationship. The variable

relations can be thought of as a set of mappings, e.g. for a given function if the left

hand side is medium then the right hand side could be either zero or large. There is no

constraint on the number of mappings and they can be disjoint. The whole function is

described using a lookup table; an example function constraint is shown below in table

4.3.

A 7→ B zero small medium large top
zero 1 0 0 0 0
small 0 1 0 0 0
medium 0 0 1 1 0
large 0 0 1 1 1
top 0 0 0 0 1

Table 4.3: Function Constraint in FuSim

4.2.8 State Transitions

As in QSIM, FuSim defines a set of valid state transitions to determine how a system

behaves over time. FuSim considers four different types of transitions from variable

〈A1, B1〉 to 〈A2, B2〉 summarised as follows:
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• Null-transitions – The null transition is when no transition takes place, i.e.when

A1 = A2 andB1 = B2

• M-transitions – Magnitude transitions occur when only the magnitude changes,

the value of the derivative remains constant, i.e. whenA1 6= A2 andB1 = B2

• R-transitions – A rate transition is defined as when the derivative changes but the

magnitude remains constant, i.e. whenA1 = A2 andB1 6= B2

• MR-transitions – The final type of transition is the magnitude/rate transition and

this occurs when both the magnitude and derivative change instantaneously, i.e.

whenA1 6= A2 andB1 6= B2

One restriction is used to the above; if a variable has a real number as the magnitude, then

an R-transition is not allowed to occur. This emphasises howthe transitions occur around

zero which is often implemented as a real number witha = b = α = β = 0.

4.2.9 Algorithm

Since FuSim is largely based on QSIM, the algorithm has many similarities. Like QSIM,

FuSim requires a model in the form of a set of constraints, andan initial state to which it

then produces an output of all the possible behaviours of thesystem. FuSim achieves this

by progressing through the following algorithm:

1. Generate a set of valid transitions for each variable in the current State, and calculate

the temporal information associated to each transition.

2. Filter the qualitative values for each individual constraint to ensure they are consis-

tent with the model.

3. Filter adjacent constraints to ensure pairwise consistency.
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4. Calculate arrival time for all variables and use temporalfiltering to remove conflict-

ing values1.

5. Generate states and use global filtering to remove furtherstates. Mark each remain-

ing state as a successor to the current state.

6. Repeat 1→ 5 until no more changes are observed or a resource limit is met.

As with QSIM, FuSim combines stages 2 & 3 to create an incremental Waltz Filter. The

above algorithm has many similarities with the QSIM algorithm, however one main dif-

ference is the inclusion of advanced temporal calculationswhich give FuSim an advantage

over other QR techniques. These temporal calculations offer more information as to when

states can exist and the amount of time they can exist for, andare a benefit of using fuzzy

numbers over purely qualitative values.

4.3 Morven

The motivation of Morven (Coghill, 1996) was to create a constructive qualitative reason-

ing engine for use in a model-based diagnostic system (MBDS). The motivation behind

using constructive techniques was to decrease the number ofspurious behaviours. Coghill

started by completing an in-depth review of many existing QRtechniques and created an

implementation which included all the advantages of his research into a single system.

The result was a novel framework for fuzzy qualitative reasoning allowing the choice of

several algorithms. Additional features to this frameworkare discussed below along with

the central algorithms to Morven.

1The original FuSim algorithm used temporal filtering to remove conflicting values however the method
was incorrect. Coghill (Coghill, 1996) corrected the temporal filtering calculations and shows that no values
can be removed at this stage.
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4.3.1 Differential Planes

In QSIM and similar QR engines the variable and model representation is fixed which

is quite restrictive in that all derivatives of equations are calculated implicitly. The Pre-

dictive Engine (Wiegand and Leitch, 1989) utilises the Predictive Algorithm (Wiegand,

1991) which allows more flexibility in the mode of description. Differential Planeswere

introduced which allow the model to be described at a more detailed level. The first dif-

ferential plane describes the model in a similar manner to that in which a typical numer-

ical simulator would require. Further differential planesdescribe the model with further

derivatives allowing for more accurate simulation qualitatively. These further differential

planes are merely the derivative of the previous one but allow more structural information

to be included in the model explicitly. The motivation for this was to reduce the number

of spurious behaviours generated by QR systems but in fact itwas shown (Coghill, 1996)

that they do not. However, differential planes allow the modeller to have control over the

number of derivatives for each variable and also allow simpler equations to be used for

the derivatives resulting in less states being generated inan envisionment if required.

4.3.2 Fuzzy Vector Envisionment

Vector Envisionment (Morgan, 1988; Coghill, 1992) is another constraint based QR en-

gine, however it only reasons purely qualitatively, i.e. with the{+ 0 -} quantity space.

Morgan introduced multiple derivatives for variables which allows the distinction between

linear and non-linear systems which was not possible in QSIM’s monotonic function rep-

resentation. With these extra derivatives it is possible not only to determine the rate of

change of a variable, but also the curvature which is very useful. Although this can be

achieved in QSIM by explicitly stating that one variable is the derivative of another or

by the use of extensions, vector envisionment does this automatically for all variables.

Variables are defined using a vector of length equal to the number of derivatives to reason

with, e.g. V = [+ + −] states that variableV is positive and increasing, but the
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amount it is increasing by is decreasing.

Morven furthers vector envisionment by extending it to the fuzzy domain and terms the

featureFuzzy Vector Envisionment. This is using the vector envisionment approach of

multiple derivatives per variable but also allowing these to be fuzzy values instead of pure

qualitative values. Fuzzy Vector Envisionment and Differential Planes are combined to

provide a very powerful simulation technique offering far more information than previ-

ously possible with QR approaches. A variable and its derivatives is termed a Variable

Vector in Morven.

4.3.3 Constructive Simulation

The distinction between constructive and non-constructive approaches was first hypothe-

sised by (Wiegand, 1991). QSIM and its derivatives use a non-constructive approach to

simulation. It was believed that due to this approach extraneous spurious behaviours are

generated therefore Wiegand implemented a constructive technique similar to that used in

numerical simulators.

Morven incorporates two simulation algorithms, one based on a constructive approach

and another semi-constructive approach. The reader is directed to (Coghill, 1996) for

details about the constructive algorithms.

4.3.4 Auxiliary Variables

Morven, like its predecessors, uses constraints that are specified using two or three vari-

ables. When creating these two or three variable constraints from differential equations it

is often required to create a temporary variable. These temporary variables define a range

of values which do not necessarily map exactly to any quantities from the quantity space.
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QSIM and similar approaches map this temporary variable into the quantity space using

the approximation principle thus unnecessarily widening the variable’s range an therefore

creating unnecessary additional states. To reduce the number of spurious behaviours gen-

erated, Morven introduced the use of auxiliary variables. These are variables which are

not mapped back to any quantity space, instead the value of anauxiliary variable is kept

temporarily for use between constraints. This is made possible by vector envisionment

which allows variables to have any number of derivatives including none thus leaving

only the magnitude of a variable. An example of the use of an auxiliary variable is given

below. If we have the following qualitative differential equation

ẋ = Px + Q

This would be broken down for use in JMorven as shown:

auxA = P.x

ẋ = auxA + Q

VariableauxA is a temporary variable and as such should not be mapped to a quantity

space otherwise spurious states may be generated due to the approximation principle.

4.4 SyNCSim

It is worth mentioning one other fuzzy qualitative reasonersince it also attempts to carry

out qualitative simulations in a non-constructive manner.SyNCSim (Bartlett, 2005) is a

successor to Morven but approaches the problem of simulation using a non-constructive

algorithm allowing it to reason with models which are not necessarily causally ordered,

or that contain algebraic loops.
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Models in SyNCSim are defined in a similar manner to those in its predecessor, using

Qualitative Differential Equations to specify the constraints of the system and using fuzzy

quantity spaces to define the domains of the variables. As in Morven, SyNCSim also uses

differential planes to explicitly define the derivatives ofa model and utilises fuzzy vector

envisionment to represent variable values across these differential planes.

The simulations in SyNCSim are carried out synchronously using an internal clock in-

stead of asynchronously as in most existing qualitative reasoners. The motivation behind

this approach was to generate an output that not only predicts the order in which events

occur but also predicts accurate times between events. At each time step all of the model

variables in an initial state are propagated using Euler integration and obeying continuity

constraints. If the continuity constraint is breached, thetime-step is reduced to the max-

imum allowable step which ensures the continuity constraint remains consistent; this is

termedMinimum Interval Euler Integration(Scott and Coghill, 1998). For example, if

variableV is currentlyp − small and after a time-step,δt, the integration phase dictates

thatV will becomep − large then the continuity constraint is breached sinceV does not

pass throughp − medium. SyNCSim therefore reduces the time-step,δtopt, until V is

observed to pass throughp − medium. This is effectively a form of step-size refinement

for use in qualitative simulation. Once the successor values have been calculated, all per-

mutations of the propagated quantities are used to generatestates which are then tested

for consistency with the constraints. The remaining consistent states are then marked as

successor states to the initial state.

The SyNCSim approach offers a method of non-constructive, synchronous qualitative

simulation and the results confirm that it is possible to use non-constructive approaches

in a synchronous simulator.
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4.5 Summary

The purpose of this chapter was to introduce the field of fuzzynumbers for representing

numerical imprecision and their use in the field of qualitative reasoning. The combina-

tion of fuzzy numbers and qualitative reasoning inspired the development of FuSim and

its successors. The fuzzy four-tuple parametric representation is briefly discussed as a

method to simplify how fuzzy numbers are defined. This allowsfuzzy numbers and the

operations on them to be implemented more efficiently than using ‘real’ fuzzy regions.

Fuzzy quantity spaces are defined as a method to specify whichfuzzy values are avail-

able. This discretization of the real number line allows a qualitative approach to fuzzy

numbers and is adopted by FuSim and its successors. Several techniques to aid the use

of fuzzy numbers were introduced in FuSim. A fuzzy arithmetic was defined for the core

arithmetic functions.α-cuts are also used as a means to convert fuzzy numbers into real

crisp intervals aiding temporal calculations and the approximation principle. The approx-

imation principle is used to determine which values from thequantity space a calculated

value can be approximated by. Setting a lowα-cut means that more quantities approxi-

mate the calculated value, whereas a higherα-cut results in less quantities approximating

it.

Morven incorporated several useful features over FuSim. The use of multiple derivatives

per variable allows the behaviour over time to be simulated more accurately. The addition

of differential planes allows extra information to be inherent in the model again increasing

the accuracy of simulations. One major improvement in Morven was the addition of

auxiliary variables. These are temporary values which are used when equations are broken

down into 2 or 3 variable constraints. Since these variablesare temporary, no quantity

space is assigned which allows the exact values to be used across constraints and reducing

the number of spurious solutions.



Chapter 5

Simulation

5.1 Introduction to Simulation

Numerical simulation has been studied for many years. Thereare many well-known, tried

and tested techniques to simulate the behaviour of a system.The most common of these

techniques includes Euler Integration, Taylor Series Expansion and Runge-Kutta meth-

ods. The approach is very similar in each case, a system of equations are expressed as

several ordinary differential equations. These equationsare used to estimate the succes-

sive values of the variables using some integration techniques. Taylor Series Expansion

(and Euler Integration since it is equivalent to a first orderTaylor Expansion) uses the

current values of derivatives to estimate the values after some time stepδt = x − a. The

general formula for Taylor Series is:

f(x) = f(a) + f ′(a)(x − a) +
f ′′(a)

2!
(x − a)2 + ... +

fn(a)

n!
(x − a)n + ...

wheref(x) is the estimated value of the function after the time-step and the current value

of the system variable is denoted at timet = a. Below shows Euler Integration in a form
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more familiar to engineers:

f(x)t=t0+δt = f(x)t=t0 + δt.f ′(x)t=t0

Euler Integration is used qualitatively by Morven (Scott and Coghill, 1998) which re-

places the transition rules for determining how qualitative states transit between one an-

other. The downside of Euler Integration is that it is not very accurate and can introduce

quite large errors into a simulation.

More advanced integration techniques can be used to increase the accuracy of the integra-

tion phase. The following equations define the fourth-orderRunge-Kutta process (Press

et al., 1992):

k1 = h.f(xn, yn)

k2 = h.f(xn +
h

2
, yn +

k1

2
)

k3 = h.f(xn +
h

2
, yn +

k2

2
)

k4 = h.f(xn + h, yn + k3)

yn+1 = yn +
k1

6
+

k2

3
+

k3

3
+

k4

6
+ O(h5)

whereh is the time step. The first equation estimates the differencein y before and after

the time step. The second equation then uses this to find the difference in half of the

time-step more accurately. The third equation then splits the time-step again to get the

difference iny more accurately yet again. The last equation then uses thesecalculations

to provide the final estimation for the value ofy after the time-step, i.e.yn+1.

This method estimates the gradient of each variable at several intermediate points between

the current time and the goal time. These estimates are then combined to estimate the



5.1. Introduction to Simulation 70

real gradient to calculate the values at the goal time. Higher order Runge-Kutta methods

allow larger step sizes to be used without losing any furtheraccuracy, however the optimal

step-size cannot be known for all systems therefore some sort of step-size refinement is

common in many algorithms. Froese (Froese, 1961) provides an evaluation of Runge-

Kutta type methods for the interested reader.

The methods of simulation described above are termed synchronous simulation, or clock-

driven simulation. It differs from asynchronous simulation as discussed in section 2.3.4

in that all variables are propagated at regular time-steps even if no qualitative behavioural

changes occur. Asynchronous simulation is driven by eventsor changes in behaviour

whereas synchronous simulation is driven by a clock.

Numerical simulation is a proven technique to estimate how dynamic systems behave

over time however they cannot handle imprecision. One method to add imprecision is to

use Interval Mathematics. Interval Mathematics is a well researched area and several good

text books are available discussing the area, including (Moore, 1966, 1979; Lohner, 1987;

Alefeld and Herzberger, 1983). The main problem of intervalsimulation is that intervals

widen unnecessarily over time when using them without any additional knowledge of the

rest of the model (termed non-interacting). An example of this is if we take

y = 1 − x

z = 3x + y

and set

x = [1 2]

then we get
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y = 1 − [1 2] = [−1 0]

z = 3[1 2] + [−1 0] = [2 6]

however solving the two equations to eliminatey shows that the result should in fact be

z = [3 5]

This above process generates an approximate hypercube witheach side representing the

interval of each individual variable after each equation has been solved. The interacting

method proposed by Moore (Moore, 1966) uses a connection matrix to transform the

co-ordinates using the partial derivatives of the model. This matrix is created using the

partial derivatives of the system variables and is created once for each time-step. Using

the connection matrix and the associated Jacobian matrix itis possible to calculate the

intervals without generating hypercubes hence no unnecessary divergence occurs.

Numerical Simulation is a very useful technique but, as withthe main motivation behind

Qualitative Reasoning, sometimes only imprecise or incomplete information is known.

Creating qualitative envisionments of complex systems canproduce a very large number

of states which takes a long time to produce therefore simulations are often better suited

(Milne, 1991). In this case a combination of the two methods allows behaviours to be

generated in reasonable lengths of time. Semi-quantitative techniques can be used to

conduct simulation with the knowledge available. This is very useful as it allows analysis

of systems with incomplete or imprecise knowledge whereas numerical techniques do

not. The rest of this chapter discusses several semi-quantitative simulators that are known

in the field including QSIM-types Q2, Q3, NSIM and SQSIM as well as some fuzzy

simulators, QuaSi, FRenSi and QFSIM.
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5.2 QSIM-based Numerical Simulators

In this section, a handful of semi-quantitative simulationengines based around QSIM are

discussed with some comments about their performance.

5.2.1 Q2

The motivation behind Q2 (Kuipers and Berleant, 1988) was toimplement a system that

would allow numerical information to be embedded into qualitative models allowing extra

precision to be included. Not all variables in a system wouldhave associated numerical

information therefore traditional simulation techniquescould not predict the behaviours

of a system, yet a qualitative model may benefit from the extrainformation and produce a

more accurate behaviour, i.e. one with fewer spurious behaviours. Additional numerical

information in Q2 can be of one of two types:

• Quantitative landmark ranges[min max]

• Bounding envelopes of monotonic function

The range propagator used is similar to that of Davis (Davis,1987) which sets an initial

range for all landmarks which is then narrowed using the constraints until all ranges will

not narrow from further propagation. This results in a rangeor inequality for each variable

in the system. These values are used to solve the CSP. Q2 also uses the Mean Value

Theorem to propagate values across temporal landmarks.

The additional numerical information in Q2 is used to augment the qualitative descrip-

tions, and as such is only available at landmark time-pointssimilar to the qualitative state

descriptions in QSIM. Q2 can therefore be thought of as a special type of global filter for

QSIM.
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One major disadvantage of Q2 is that the time step is very coarse hence a lot of spurious

errors are generated within the intervals calculated.

5.2.2 Q3

Q3 (Berleant and Kuipers, 1990, 1997) extends Q2 by introducing step-size refinement. It

achieves this by detecting gaps in the behaviour generated by QSIM and Q2, and then in-

serts new auxiliary states within this gap. The new auxiliary states are interpolated to help

refine the ranges of the states. This is continued until the results are sufficiently precise or

until no further narrowing of the ranges can occur. The motivation behind this work was

to create a detailed numerical behaviour with more precise results, and thereby also im-

prove the generated qualitative behaviour; thus bridging the gap between qualitative and

quantitative simulation. Both Q2 and Q3 maintain the completeness of QSIM however

they fail to stop spurious behaviour generation hence are unsound as QSIM was.

Q3 improves on the predicted simulation of a model by providing more information be-

tween time-points. It is the belief of the author of this thesis that a system that does not

rely on refining qualitative simulation to generate numerical information would be more

precise and offer better simulations.

5.2.3 NSIM

The motivation behind NSIM (Kay and Kuipers, 1992, 1993) wasto create a simulation

engine which could make use of any numerical knowledge in addition to the fully quali-

tative models. This was thought to be of most importance in monitoring tasks where it is

vital to detect an anomaly as early as possible.
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Models in NSIM are described using Structural DifferentialEquations (SDEs), Qual-

itative Differential Equations (QDEs), and Semi-Quantitative Differential Equations

(SQDEs). The SDEs describe the form of the ODE variables qualitatively and the cor-

responding constraints. These constraints, as in QSIM, aredescribed by arithmetic oper-

ators and functional relationships. In addition to QSIM, NSIM describes the functional

constraints in more detail, e.g. if they are monotonic, parabolic, sigmoidal etc. Finally,

the SQDEs represent the numerical imprecision of the models. Parameters of the model

are described by intervals and functional constraints are defined using dynamic envelopes

which dictate how two variables change with respect to each other with more information

than qualitative functions but not requiring a strict mathematical equation. The QDEs

describe the functional relationships and define the domainof each variable used in the

SDEs, i.e. the landmark values.

NSIM evaluates the upper and lower bounds of each constraintto predict the behaviours.

Interval arithmetic is used to propagate these bounds whichresults in widening of the

intervals. One problem of only using the upper and lower bounds of variables is that

this does not always guarantee to enclose all solutions of constraints. For example, if the

intervalA = [−1 2] is taken and one constraint is defined as

x = A2

then using the extreme points method, the calculated resultwould bex = [1 4] however

the real result should bex = [0 4].

The output behaviours of NSIM are claimed to result in tighter bounds than are produced

by Q2, although Kay (Kay, 1998) admits that this is only before a certain amount of time

has passed as NSIM behaviours diverge whereas Q2 bounds remain more stable. NSIM

aimed to provide a simulation strategy that improved its predictions as the amount of

information known increased - NSIM is a step in the right direction for such a system.
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NSIM is now used mainly as part of the SQSIM package as described in the next section.

5.2.4 SQSIM

SQSIM (Kay, 1998) is a semi-quantitative simulation enginebased on QSIM and uses

the same model representation as NSIM. SQSIM makes use of thesemi-quantitative

simulation to refine the behaviour tree of the qualitative simulation thus reducing the

number of spurious behaviours generated. It also uses the qualitative predictions to aid

some of the semi-quantitative inferences, e.g. if the derivative of variableA is calcu-

lated semi-quantitatively to be in the range[−1 1] and the qualitative prediction is that

qmag(A) = inc then the semi-quantitative range can be reduced to(0 1].

SQSIM combines the inferences made by QSIM, Q2 and NSIM and thus reduce the im-

precision in the predictions made by each. QSIM is used as thecentral simulation process.

Q2 and NSIM are then used to augment numerical information and envelopes to the pre-

dictions and finally SQSIM combines the predictions to generate the semi-quantitative

states. There are several ways in which QSIM, Q2, and NSIM arecombined which are

briefly outlined below:

• Dynamic Envelope IntersectionEnvelopes are generated with NSIM and Q2 sep-

arately. NSIM produces an output envelope which is initially very well bound but

the interval arithmetic causes it to widen after a time, whereas Q2 defines a con-

stantly wide envelope. SQSIM combines these two envelopes using NSIM initially

until the envelope produced by Q2 is tighter.

• Event IntersectionThe envelope prediction from NSIM is combined with the event

descriptions from Q2 which can reduce the event ranges and time taken for each

event. SQSIM uses this which can also lead to further reductions in other events in

the system.
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• Extremum Detection This is when the envelope produced by NSIM contains an

extremum: a local minimum or maximum. When the lower and upper bounds

of the NSIM envelope exhibit this extremum, the QSIM behaviour is modified to

ensure that it also contains this local behaviour.

• Order Reduction Order Reduction is when the NSIM envelope diverges beyond

the Q2 envelope extremities, i.e. if the maximum and minimumvalues of the Q2

envelope are surpassed by the NSIM envelope, then the Q2 minimum and maximum

values are used for the magnitude of the envelope and the derivative is set to zero.

• Re-Simulation SQSIM uses the previous states to predict values for successor

states, however sometimes the final states can be used to narrow predecessor states

particularly when equilibria are reached. In this case, re-simulation can help reduce

the predicted behaviour between the initial and final states.

Since SQSIM combines several other inference engines, it succeeds in improving on them

individually however it still has a few drawbacks. Generated envelopes can still suffer

from rapid divergence resulting in a predicted output whichdiffers greatly from the real

output. Since models are based on the QSIM specification, variables are limited to one

derivative hence only Euler integration can be used which introduces errors in integration.

These simulators also infer single intervals, inferring about fuzzy ranges is thought to be

more useful for ambiguous models.

5.3 Fuzzy Simulators

In the following sub-sections semi-quantitative simulation engines based on fuzzy num-

bers are presented.
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5.3.1 QFSIM

QFSIM (Vescovi and Travé-Massuyès, 1992) was motivated by integrating numerical

simulation methods into a qualitative environment. This isachieved using fuzzy numbers

to instantiate qualities with some numerical information.QFSIM uses the same fuzzy

four-tuple representation and fuzzy quantity space definition as used in FuSim (Shen,

1991). QFSIM presents the following two methods:

• The Extremity Method . This method extends Euler’s method to incorporate fuzzy

operators based on the Extension Principle (Zadeh, 1965). The method is reported

to be complete but not sound in that it predicts all possible outcomes of a model but

also contains spurious behaviours. The extremity method has one main disadvan-

tage in that it is not easily generalized for complex models.

• The Discretisation Method. This method involves generating a set of discrete

points from the fuzzy parameters and simulating this group of points to produce

an output that is sound but not complete. This method is also used in their Qual-

itative Behaviour Generation stage to produce a global output from the group of

simulations of points.

Problems with QFSIM are that the method is only applicable tofirst and second order

systems; this limitation restricts the number and complexity of models that it can reason

with. QFSIM also uses a constructive approach which has limitations as mentioned in

chapter 2.4.1.

5.3.2 QuaSi

QuaSi (Bonarini and Bontempi, 1994a) is a framework of simulators for simulating sys-

tems with imprecision using fuzzy numbers. QuaSi is based onthe extension principle
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which is used to map an input fuzzy relation to some output when applied to a crisp al-

gebraic system. However, this requires an infinite number ofcalculations for the fuzzy

representation used in QuaSi therefore an approximation proposed by Nguyen (Nguyen,

1978) is used which approximates the fuzzy region using multiple α-cuts to generate in-

tervals which can then be used by normal interval arithmetic(Moore, 1966). There are

three main algorithms within the framework, each of which are briefly described below:

5.3.2.1 QuaSi I

The original QuaSi I (Bonarini and Bontempi, 1994c) algorithm uses fuzzy numbers and

either a system of ODEs or a set of fuzzy rules to define the model to be simulated. It

works along the lines of a typical numerical simulator in that at each time step the current

values are used for numerical integration and then the modelis used to construct the rest

of the values. This is extended to intervals using the non-interacting approach of Moore’s

interval arithmetic (Moore, 1966). Since QuaSi uses fuzzy numbers, severalα-cuts are

taken to discretize the fuzzy values which are then simulated. The resulting simulator

is guaranteed to bound all of the results of the real simulation however it suffers from

excessive widening of the intervals due to approximating the system variables as an n-

hypercube at each step.

5.3.2.2 QuaSi II

QuaSi II (Bonarini and Bontempi, 1994b) incorporates the interacting approach presented

by Moore based on the connection and Jacobian matrices. Instead of approximating the

variables as an n-hypercube, this method maintains the interactions between the variables

and hence produces results which contain far fewer spuriouserrors. They achieve this

using the property of sufficiency of vertices (or PSV) which determines if it is possible

to compute any intervals from the extreme points only. This test is not sufficient for all
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systems therefore the correct results cannot be guaranteedhowever QuaSi II does not

suffer from unnecessary divergence of the simulated intervals. Since QuaSi II is based on

the interacting approach, it therefore must use a constructive approach to simulation as

the system equations are used to construct the connection and Jacobian matrices. Hence

this method cannot be used to develop a non-constructive algorithm for simulation.

5.3.2.3 QuaSi III

QuaSi III (Bontempi, 1996) extends QuaSi II by introducing an optimisation technique to

replace the original sampling problem. The optimisation works by first taking an initial

starting point, integrating and then using the gradient to sample a new point. If a maxi-

mum or minimum is found, then the optimisation routine halts. This improves upon the

PSV problem in QuaSi II although it still does not guarantee to bound all real results.

QuaSi presents an interesting simulation engine which produces positive results; however

there are a few drawbacks. QuaSi exhibits exponential complexity with the order of the

system being simulated. Computationally it is also very intensive when simulations need

to be achieved over a long time since at each time-step the optimisations need to be carried

out. Finally, the QuaSi approach is constructive thereforeit cannot cope with algebraic

loops.

5.3.3 FRenSi

FRenSi (Keller et al., 1999) is a fuzzy simulator based on theQuaSi approach. FRenSi

generates anN-hypercube1 fuzzy region and the external surface is approximated using

corner points and cubic splines. FRenSi suffers from the same problem as QuaSi in that

the computational complexity is too great for it to be used inpractice. In his thesis Keller

1
N = n + k wheren is the number of system variables in the model andk is the number of parameters
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(Keller, 1999) outlines a simplified FRenSi algorithm whichis less processor-intensive.

This simpler algorithm takes the fuzzy regions and splits them intoα-cuts and the corners

are numerically integrated as before, however instead of using splines to describe the

borders of the hypercube, several equally spaced samples are used instead. At each step,

the minimum and maximum values of eachα-cut of each variable are recorded. What

results is a simulator which maintains a similar level of error yet executes in much less

time. Unfortunately, FRenSi still uses constructive methods therefore does not offer a

technique that can reason with more general systems as non-constructive techniques can.

5.4 Summary

Of the semi-quantitative simulators described above, those based on the non-interacting

approaches of Moore’s interval arithmetic use Euler’s method of integration which intro-

duces unnecessary errors. Even going one step further and using a second order integra-

tion technique would be of great advantage to reducing theseerrors. Unfortunately since

the simulators are based on QSIM and its derivatives, it is only possible to use first order

integration methods as only one derivative of each variableis available within the model.

These simulators also tend to have problems with unnecessary interval divergence which

introduces spurious results.

Methods based on the interacting approach offer a good simulation with few errors how-

ever these methods require a lot of computations and therefore are not suited for practical

use. Moreover the interacting method requires a constructive approach to solving the

system equations and therefore cannot cope with algebraic loops (and also require the

equations to be ordered). Table 5.1 summarises the simulators discussed in this chapter.

It is clear that there is room for a novel simulator which would operate non-constructively

yet be able to simulate with few integration errors and no spurious results due to diverging
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intervals. It would also be beneficial for it to be efficient for practical use.

Simulator Interacting? Constructive? Fuzzy Disadvantages

Q2 N N N Coarse time-step
Asynchronous

Q3 N N N Maintains spurious behaviours of Q2
Asynchronous

NSIM N N N Interval divergence
Extreme points not complete

SQSIM N N N Interval divergence
Asynchronous

QFSIM N Y Y Doesn’t handle complex models
Constructive

QuaSi Y Y Y Constructive
Very slow

FRenSi Y Y Y Constructive

Table 5.1: Summary of existing semi-quantitative simulators



Chapter 6

JMorven

6.1 Introduction to JMorven

JMorven is a novel abstract parallel architecture framework for qualitative reasoning and

simulation capable of reasoning in a fully qualitative manner, a semi-quantitative manner

and a fully numerical manner. This is all achieved using non-constructive algorithms

which are more general, being able to cope with systems regardless of whether they are

causally ordered or contain algebraic loops. JMorven has been written completely from

scratch in the Java language for maximum portability. JMorven succeeds and improves

upon the its predecessor, Morven (formerly known as Mycroft(Coghill, 1996)), by:

• incorporating parallelisations throughout the design which allows the framework

to be distributed, substantially decreasing execution time and thus making it more

applicable to industrial application.

• using totally non-constructive algorithms and the abilityto use auxiliary variables

in non-constructive algorithms.

• usingn-th order Taylor series integration which increases the accuracy over Euler
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integration.

• incorporating several novel simulation algorithms which allow non-constructive

simulations to be carried out semi-quantitatively and numerically, and also provid-

ing output charts of the simulation behaviours. Algorithmsinclude regular-spaced

methods and Monte-Carlo techniques. See chapter 7 for more information.

• Simulating on the spectrum from qualitatively to quantitatively and doing so from

the same model representation.

The original motivation to create a qualitative reasoning engine was for it to be used in

developing a model-based planner. Since no portable implementation was available it was

decided to create a basic qualitative reasoner. During the early stages of development, it

was evident that there was place for an improved strategy toward qualitative simulation.

Reading into the area showed that one research group had looked into the benefits of

parallel computing to make QSIM more efficient however therewere a few drawbacks

with their work. This motivated the development of a better system which would make

use of an abstract parallel architecture allowing it make use of a wide variety of computing

environments.

As discussed in chapter 3, Platzner and Rinner (Platzner et al., 1997; Platzner and Rin-

ner, 1998, 2000) proposed and demonstrated that it was possible to speed up the popular

QSIM package (Kuipers, 1986). They achieved positive results by porting QSIM to the C

language, by parallelising several stages and using a dedicated hardware setup to carry out

intensive calculations. There were a few drawbacks with thework undertaken by Platzner

and Rinner. One limitation of the work on parallel-QSIM was that the architecture was

designed to run on a restricted number of parallel units resulting in a non-scalable imple-

mentation. Overcoming this limitation by developing an abstract and portable architecture

should result in a more usable qualitative reasoner that would allow it to be used to solve

a wider variety of problems. Another drawback with their work was that they did not
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parallelise all stages of execution.

Another motivation for JMorven was to develop a simulation engine capable of reason-

ing on the spectrum from fully qualitative to fully quantitative which would mean that

the same tool could be used throughout the development of anymodel design from con-

cept through prototype to final product. This is useful in thebeginning stages of design

when not all factors are known, nor is specific numerical knowledge therefore full qual-

itative models are most useful. As the design continues, more numerical information is

known hence a semi-quantitative model can be used to predictbehaviours. Finally, a full

quantitative model can be derived leading to the design of the final product.

JMorven is the first known fuzzy qualitative reasoning engine to make use of parallelisa-

tions to benefit execution time. JMorven benefits from parallelisations in all stages of the

reasoner which is a first for QR. These parallelisations are incorporated into an abstract,

portable architecture which allows JMorven to be scalable.It is also the first to provide

a range of simulations from fully qualitative to fully quantitative. Merging these together

provides a parallel architecture for simulation which is also thought to be novel. Hav-

ing this framework implementing these features is believedto be useful and contribute

significantly to the field of qualitative reasoning.

The rest of this chapter discusses the qualitative aspects of the JMorven framework, in

particular the stages of qualitative analysis and transition analysis that have been paral-

lelised. There is also a discussion about the use of auxiliary variables in a non-constructive

algorithm.
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6.2 Design

Although JMorven is based largely on its predecessor, Morven, several design choices

have had to be made due to JMorven reasoning in a non-constructive manner. The result

is that JMorven combines many features from several existing QR packages including

QSIM, FuSim, Parallel QSIM and Morven. As with these packages, JMorven implements

the Qualitative Analysis (QA) and Transition Analysis (TA)phases. These are discussed

in more detail below. Figure 6.1 shows how the QA and TA phasesare combined to create

the qualitative component of JMorven.

Figure 6.1: Flowchart of QA and TA phases in JMorven Operation.
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6.2.1 Qualitative Analysis

The Qualitative Analysis (QA) phase in JMorven is responsible for analysing the con-

straints and ensuring that qualitative states are consistent with them. This is typically split

into two stages, the constraint filter and the state generator. The aim of the constraint filter

is to generate and test sets of tuples which are consistent with every constraint. There are

several methods for achieving this but the most common involves a two step procedure

consisting of a Tuple Filter and a Pairwise Filter. The TupleFilter generates sets of valid

tuples for each constraint in the model which are guaranteedto be unique and consis-

tent for the current constraint only. To ensure all tuples are consistent with the complete

model, a pairwise filter is used to test each pair of constraints for inconsistencies. Once

the pairwise filter has completed, a set of consistent tuplesremain which are then used to

generate qualitative states. Each qualitative state can then be analysed by the Transition

Analysis phase for simulation.

6.2.2 Transition Analysis

The Transition Analysis (TA) phase takes each qualitative state and generates a list of pos-

sible successor states to be tested by the QA stage. Generating these successor states is

achieved either by integration or by following a set of predefined transition rules depend-

ing on whether simulations or envisionments are required respectively. JMorven allows

two modes of simulation; one which reasons qualitatively inthat all variables in the states

adhere to the values in the quantity space. A directed graph is generated for all states

reachable from the initial state therefore all qualitativebehaviours can be extracted from

this graph. The alternative simulation mode in JMorven is carried out numerically using

exact numbers or fuzzy numbers to represent imprecise values. This simulation mode is

discussed in more detail in chapter 7.
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6.3 Abstract Parallel Architecture

JMorven implements a novel parallel architecture, as shownin in figure 6.2, which allows

it to make best use of the available resources, whether it be multiple processors or multiple

computers in a distributed computing environment. This architecture was developed in

Java for maximum portability. The following sections describe the main stages in detail,

including the primary function of the stage and how it has been implemented in parallel.

Figure 6.2: The JMorven Parallel Architecture Overview.

6.3.1 Parallel Tuple Filter

The tuple filter is responsible for iterating through each constraint in turn and providing a

list of valid tuples. A valid tuple is a set of consistent variable values for the constraint,

e.g. for the constraint shown:

A = B + C

If B is smallandC is mediumthen possible values forA may includemediumor large

depending on the quantity space used. The tuple filter is either given a list of tuples to

check for consistency or it can generate all possible consistent tuples from an exhaustive

list of all possible quantities.



6.3. Abstract Parallel Architecture 88

The tuple filter in QSIM was analysed by Platzner & Rinner (Platzner et al., 1997). They

constructed the data-dependency graph of the tuple filter and Waltz filter shown in figure

3.1. The incremental Waltz Filter used in QSIM could be replaced by a sequential pairwise

filter. Platzner & Rinner found that while the incremental one was designed so that tuples

could be discarded earlier thus having fewer tuples to filter, the speed benefit was not

great. This speed increase was certainly not significant compared to the speed increase

by paralellising the tuple filter. Splitting the tuple filterand Waltz filter into sequential

filters results in the data dependency graph shown in figure 3.2. This allows the parallel

tuple filter to execute each constraint in its own execution unit since there are no inter-

dependencies. The Waltz filter merely waits for all constraints to be fully filtered before

proceeding with its own filtering method.

JMorven uses containers to hold certain entities during execution. These containers are

simple data structures similar to linked lists and do not have any mechanism to protect

data when accessed from multiple execution units. This allows optimal performance to

be achieved when accessing the contents of the containers, but care must be taken when

accessing to ensure that if multiple execution units accessthe data concurrently then no

corruption will take place. Mutexes are used to protect against this.

Each constraint is distributed equally between a number of containers; the number of

containers is equal to the maximum number of execution unitsavailable. One JMorven-

Thread1 (see Appendix D.1 for the Java code) is created for each container therefore in

each JMorvenThread containing a number of constraints to analyse and generate a valid

set of tuples.

Each JMorvenThread iterates through all of the constraintsin the container. For each

constraint an exhaustive list of all tuples for all quantities in the associated quantity spaces

1A JMorvenThread is a wrapper for a standard Java thread whichoffers some housekeeping. This
includes keeping track of the number of threads running concurrently, utility methods for waiting on threads
to complete and timing mechanisms to determine how much timeeach thread takes to execute.
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is generated. Each tuple is then checked in turn to determineif it is consistent with the

constraint. If the tuple is inconsistent it is discarded. Ifit is consistent it is then stored in

the output container to be tested by the pairwise filter.

A diagram of how the Tuple Filter is implemented is shown in figure 6.3.
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Figure 6.3: The Tuple Filter in parallel.

6.3.2 Parallel Pairwise Filter

The Pairwise Filter is used to ensure that all tuples resulting from the Tuple Filter are

consistent across all constraints, since the tuple filter only reasons per-constraint. This is

achieved by testing each pair of adjacent constraints (two constraints are said to be adja-

cent if they each share a common derivative of a variable, i.e. vector element). Each valid

pairing then iterates through all possible tuples and discards those that are not common

to both constraints resulting in a list of tuples numerically equal to or less than the input.

An example of the reasoning behind the pairwise filter follows. If we have constraints C1
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and C2 from the single tank example as shown in Appendix A.1 with tuples as shown:

C1:[V ′ qi qo] = [p-small p-large p-medium]

C2:[V qo] = [p-medium p-medium]

The only vector element common to both of these constraints is qo which is consistent

for the given values (p-mediumin both constraints) therefore the pairwise filter would not

discard this pair, however if we had:

C1:[V ′ qi qo] = [p-small p-large p-medium]

C2:[V qo] = [p-large p-large]

then the pair would be discarded since the value ofqo would be inconsistent across the

pair of constraints.

Each individual pair of constraints can be filtered independently of all others since there

are no data dependencies between them, therefore allowing the pairwise filter to be eas-

ily parallelised. JMorven implements this pairwise filter by first creating an exhaustive

list of all possible pairs of constraints for the model and removing those that are not ad-

jacent. JMorven then creates a number of containers equal tothe number of execution

units available. Each adjacent pair of constraints is then distributed equally amongst these

containers and a new JMorvenThread is created for each container. Each JMorvenThread

then iterates through all pairs of constraints. For each adjacent pair, all of the consistent

tuples are tested to ensure they are consistent with both constraints. If a tuple is found that

is inconsistent then this tuple is removed from the container. After all tuples have been

checked, the container contains only tuples that are valid with that pair of constraints

which is then passed to the state generator.
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A diagram of the data dependency of the pairwise filter is shown in figure 6.4.
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Figure 6.4: The Pairwise Filter in parallel.

6.3.3 Parallel State Generator

The State-generator is the most computationally expensivestage of Qualitative Analysis,

especially when creating an envisionment of all possible states. This is the process of

iterating through each set of tuples and creating unique states for every combination of

variables’ derivatives possible.

The State Generator is implemented in JMorven by iterating through each constraint in

turn, in a breadth-first manner, starting with an empty initial state. Each constraint has

an associated number of tuples which are consistent with it.These tuples are distributed

equally among a number of containers equal to the number of execution units available.

Each tuple container also has an associated states container. Each states container has a

copy of the same contents; the partially defined consistent states up to this point. Each
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pair of containers is then used to generate a new set of partial states for the set of tuples in

the next constraint. Each pair of containers are used as input to the JMorvenThread and

the output is a set of valid partial states for the next iteration. The following pseudo-code

outlines the process:

initialise input state-containers with empty initial states

iterate c through all constraints

split tuples in constraint into tuple-containers

iterate t through tuple-containers

create JMorvenThread with input containers to produce output state-containers

copy output state-containers into new input state-containers for next iteration

Each JMorvenThread in the State Generator is implemented byiterating through each set

of tuples in the tuple-container and each partial state in the state-container. If the state is

consistent with the tuple then the tuple is set and added to the output state-container. The

following pseudo-code describes the process:

iterate through t tuples in tuple-container

iterate through s states in state-container

if tuple t is consistent with state s

create copy of state s and set tuple t - store in output state-container

This allows the state-generation to run in parallel as shownin figure 6.5.

6.3.4 Parallel Transition Analysis

The Transition Analysis (TA) phase involves determining how qualitative states transit

between one another from one point in time to another. This isachieved by following

a set of transition rules as shown in figure 6.6 or by numerically integrating variables to
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Figure 6.5: The State Generator in parallel.

find successor values. The numerical integration transitions are discussed in more detail

in chapter 7.

The transition rules are shown for the purely qualitative quantity space for simplicity

however the idea applies to fuzzy quantities too. For the quantities adjacent to zero in a

fuzzy quantity space, the diagram above still applies, e.g.if we have variableA = [p-small

n-small] then, from the diagram, it can transit to either [zero n-small], [p-small zero], or

Figure 6.6: The Transition Rules in JMorven.
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[zero zero]. In addition to this the derivative may change to any adjacent quantity i.e.

zeroor n-mediumwhich gives additional variable values of [p-small n-medium] or [zero

n-medium]. A more general set of rules is given below:

• Quantities can only transit to adjacent quantities in the quantity space due to the

continuity constraint (quantities can also stay as they areunless the quantity has

zero width and has a non-zero derivative).

• If there is derivative information available this dictatesthe direction of the tran-

sition, i.e. if the derivative is greater than zero then the quantity must transit to

the next larger quantity in the quantity space (similarly for negative derivatives and

smaller quantities).

• If the quantity has zero width then any derivative change must also trigger a change

in the quantity, e.g. if we have the quantityonewhich represents exactly the number

one as a fuzzy quantity and we have variableA = [one zero] then transitions to [one

n-small] and [one n-positive] would be invalid since the quantityonedid not change.

The transition analysis phase takes each qualitative stateand applies the transition rules

to each variable within the state and generates a list of possible successor states. These

successor states are only consistent with the transition rules and must be filtered through

the qualitative analysis stage to check that they are consistent with the constraints too.

Since the transition rules are applied to each state independently, the TA phase can be

easily parallelised. Each execution unit is given a number of states to analyse and generate

successor states. The states are distributed naı̈vely, assuming that each execution unit has

the same processor power available.

A diagram of the TA implementation is shown below in figure 6.7.
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6.3.5 Complete Parallel Implementation

In this chapter, each stage of the JMorven qualitative reasoning engine has been discussed,

and a description given of how it has been implemented in parallel. Figure 6.8 shows a

complete diagram of JMorven implemented in parallel.

6.4 Auxiliary Variables

Models in JMorven are defined using a set of qualitative differential equations. These

equations are split into two or three place constraints for use internally. This restriction

is to enable the tuple filter to execute efficiently and also allows ease of parsing. If a

QDE requires more than one of these two or three place constraints, temporary variables

need to be used. JMorven incorporates auxiliary variables like its predecessor, Morven.

However there are several problems implementing auxiliaryvariables in JMorven since it
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Figure 6.8: The JMorven Qualitative Parallel Implementation.
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reasons non-constructively. This is discussed in more detail below.

6.4.1 Non-constructive Auxiliary Variables

Auxiliary variables are used temporarily to store the values of a JMorven variable across

constraints. Auxiliary variables are implemented in JMorven as a fuzzy four tuple which

is initially unset, then when constrained this interval is set. Within a constraint the union

of all possible temporary values is used for the auxiliary variable to ensure that all tuples

remain valid using this temporary value. Across different constraints the intersection of

temporary values is taken which is effectively the same as the pairwise filter on normal

variables. The intersection of values is taken to ensure that all temporary values are con-

sistent with the whole model. For example (using crisp quantities to keep the example

simple), if these two constraints are part of a model

T = A ∗ B

D = C + T

whereA is p − small = [0.5 0.75] and B can be eitherp − medium = [1.0 1.5] or

p − large = [1.5 2] then the auxiliary variableT can take the values of[0.5 1.125]

or [0.75 1.5]. Since this is within a single constraint then the union of these values is

taken thereforeT = [0.5 1.5]. If we then evaluated the second constraint and found that

T = [0.75 1.667] then the intersection of both values ofT would be taken resulting in

T = [0.75 1.5]. Notice that this does not necessarily match any quantity inthe quantity

space.

Since JMorven reasons non-constructively there is no requirement for ordering equations

thus JMorven must be able to handle unordered auxiliary variables or loops. Before ex-

ecution, JMorven loads the model file and parses the constraints, then it finds all of the

dependencies of each auxiliary variable in an attempt to order them automatically to avoid



6.5. Summary 98

iteration. If a cycle is detected, i.e. there is an algebraicloop in the model constraints,

then iteration will have to take place. Iteration of the constraints occurs because narrow-

ing the interval of one auxiliary variable may have an effecton another if there is a loop

or the constraints are unordered. This iteration continuesuntil there is no change in any of

the auxiliary variables concerned (typically only three iterations are required, one which

narrows the maximum side of the fuzzy tuple, one which narrows the minimum and a

final one to ensure the changes don’t have any further effect).

6.5 Summary

In this chapter, the motivations for JMorven were discussedand how JMorven was de-

signed and implemented. The chapter details the qualitative aspects of JMorven including

the parallel architecture created for increasing efficiency when executed in environments

with multiple processors available (Chapter 7 presents thesemi-quantitative and quanti-

tative contributions of JMorven). These parallelisationsare discussed with the reasoning

behind the design of each major stage and how it is implemented in JMorven. The filters

(tuple and pair-wise) and transition generator are classicexamples of data parallelisation

in that the data to be filtered can be split easily for use in each execution unit. The state

generator is a more complex stage and required an algorithm parallelisation to make best

use of available resources. The result is that all of the stages in JMorven have been par-

allelised resulting in JMorven being the first fully parallel qualitative reasoning system

available. In addition to this, JMorven uses non-constructive algorithms which make it

more general since they have the ability to cope with systemsregardless of whether they

are causally ordered or contain algebraic loops.



Chapter 7

Non-constructive Fuzzy Interval

Simulation

As discussed in chapter 5, there are a number of simulation strategies already available

yet none have achieved good results when using non-constructive algorithms. In this

chapter, a non-constructive synchronous simulator, as part of the JMorven framework,

is presented and discussed. This simulator has several different algorithms for tackling

the problem. What results is a simulator that can reason withfuzzy numbers in a non-

constructive manner and which does not suffer from unnecessary interval divergence.

SyNCSim (discussed in Chapter 4.4) showed that it is possible to conduct synchronous

simulation using non-constructive algorithms. JMorven uses this knowledge to apply

similar techniques to semi-quantitative and quantitativesimulation.

7.1 Twin Interval Fuzzy Numbers

Fuzzy numbers in JMorven are represented by fuzzy four-tuples. However to aid the

calculations in the synchronous simulation environment this has been modified to a new
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representation termedTwin Interval Fuzzy Numbers. Fuzzy numbers are represented by

two numerical intervals: The inner interval is defined from[a b] and the outer interval

from [a−α b+β]. Sinceα andβ are zero or positive then the inner range is guaranteed

to be a subset of the outer range, from Moore (Moore, 1966):

A ⊂ B −→ f(A) ⊂ f(B)

for intervalsA andB. This representation can be used to specify a real interval if α

andβ are zero, i.e. both ranges are equal. Also if the intervals have zero width, this

representation can also be used to represent a real number. It is worth noting that this

could be extended to represent more complex fuzzy numbers where each interval could

be the result of taking theα-cut with different values forα.

7.2 Updated Interval Arithmetic

There are several different definitions for interval arithmetic in the literature. Table 7.1

is an amalgam of these with the addition of a flag to determine if the operands refer to

the same interval. One point to note about this table over that used in existing qualitative

reasoning engines is that this table defines the arithmetic properties for operations whose

operands may span zero which is more important for interval simulation than qualitative

simulation since the time-steps are generally far smaller.The result of this is a more

complex table however implementation-wise it does not increase computation time.

Qualitative trigonometric operations (Liu and Coghill, 2005a; Coghill et al., 2005) have

been included in JMorven. However, JMorven extends the qualitative trigonometry by

adding the ability to calculate the result of trigonometricoperations on intervals. This

is made difficult in that trigonometric functions are non-monotonic and therefore the ex-

treme points are not sufficient to calculate the real result.The process below outlines how

the trigonometric interval[c d] is calculated in JMorven:
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Let: m = [a b], n = [c d]
Operation Result Conditions
−n [d c] all n
1
n

[1
d

1
c
] c, d > 0 or c, d < 0

[−∞ ∞] c ≤ 0 andd ≥ 0
m + n [a + c b + d] all m, n

m − n [a − d b − c] m 6= n

[0 0] m = n

m × n [ac bd] m = n and(c, d > 0 or c, d < 0)
[0 bd] m = n andc ≤ 0 andd ≥ 0
[ac bd] m 6= n anda, c > 0
[bc ad] m 6= n anda > 0 andd < 0
[bc bd] m 6= n anda > 0 andc ≤ 0 andd ≥ 0
[ad bc] m 6= n andb < 0 andc > 0
[bd ac] m 6= n andb < 0 andd < 0
[ad ac] m 6= n andb < 0 andc ≤ 0 andd ≥ 0
[ad bd] m 6= n anda ≤ 0 andb ≥ 0 andc > 0
[bc ac] m 6= n anda ≤ 0 andb ≥ 0 andd < 0
[min(ad, bc) max(ac, bd)] m 6= n anda ≤ 0 andb ≥ 0 andc ≤ 0 andd ≥ 0

m
n

[1 1] m = n

m × 1
n

m 6= n

Table 7.1: Interval Arithmetic Operations as Defined in JMorven
m 6= n denotes that the intervals do not correspond to the same variable whereasm = n

indicates that the intervals do correspond to the same interval. a, c > 0 indicates that both
intervals are positive whereasb, d < 0 dictates that both intervals are negative.c ≤ 0 and
d ≥ 0 (as well asa ≤ 0 andb ≥ 0) governs that the interval spans zero. It is possible to
definem × n for when both intervals span zero however it has been left outin this table
for simplicity.

if (d − c) ≥ 2π then return [min(ftrig) max(ftrig)]

determine result of ftrig([c d]) −→ [lo hi]

if lo > hi then swap lo and hi

find nearest quadrant < lo using lastQuad = c − (c mod π
2
)

set nextQuad = lastQuad

while nextQuad < d

update [lo hi] with ftrig(nextQuad)

increment nextQuad by π
2

return [lo hi]
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Having a fully correct interval arithmetic definition is important to reduce the number

of spurious behaviours generated. Some simulators use a na¨ıve interval arithmetic based

on merely the extreme points or assume that intervals do not span zero. In many of these

cases not all values may be included in the calculated results and in some cases extraneous

width of intervals may be calculated particularly in the case when operations are carried

out on the same variable, e.g.A × A.

7.3 Integration Techniques

As discussed in section 5.1 there are many different techniques used to approximate the

integration process for simulation. They are summarised below with respect to non-

constructive simulation.

• Euler Integration is the simplest form of approximate integration. It has the benefit

of being simple and very efficient however it suffers from large errors even when

very small time-steps are used. It is used in existing systems since often only one

derivative is known for each variable.

• Runge-Kutta methods find an estimate of the derivatives at successive time-steps

and refine them using the system of equations to achieve more accurate results.

The second order and fourth order variants are the most common and provide an

increased level of accuracy when used in simulation. However, these cannot be

used non-constructively since they require interaction between the variables of the

model in a similar way to Moore’s interacting approach (Moore, 1966).

• Taylor Series uses as much derivative information as possible unless a threshold is

defined and reached. This allows Taylor Series to be more accurate for variables of

an order greater than two (Euler Integration is the equivalent of first order Taylor
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Series). Since JMorven reasons with multiple derivatives,this technique is partic-

ularly suitable. The more derivatives there are specified inthe model results in a

more accurate simulation. It is also suited toward non-constructive simulation since

each variable can be integrated individually.

It is clear that Taylor Series offers the best method for integration for use in JMorven. To

integrate using Taylor Series, each variable is consideredin turn and each derivative can

be calculated with the exception of the last derivative since there is no further derivative

information available. This last derivative of a variable is left undefined although the

model constraints should constrain it. A Taylor Series is defined as:

f(x) = f(a) + f ′(a)(x − a) +
f ′′(a)

2!
(x − a)2 + ... +

fn(a)

n!
(x − a)n + ...

wheref(x) is the estimated value of the function after a certain time-step. The current

value of the system variable is denoted att = a. JMorven integrates a variable vector as

shown in pseudo-code below:

set n = number of derivatives in variable Vt

iterate x from 0 to n − 1

set Pt+δt = Pt from deriv x of Variable Vt

iterate y from x + 1 to n

calculate f = δt(y−x)

(y−x)!

increment Pt+δt by f × Pt

set Pt+δt as deriv x of Variable Vt+δt

return Vt+δt
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7.4 Non-Constructive Interval Simulation

Since JMorven uses a Twin Interval representation for FuzzyNumbers, it can be sum-

marised as interval simulation since simulating in the fuzzy domain is merely an exten-

sion of interval simulation in this way. To simulate non-constructively a model and a

partially-defined initial state are required. The more precision available in the initial state

results in a more precise simulation. The initial state is first analysed to ensure that it is

consistent before proceeding with the simulation. The simulation process is an iterative

one which starts from timet0 until tend in steps ofδt. The first part of the process is to

integrate each variable in turn as described in section 7.3.Once the integration is com-

plete, the constraints are used to determine the values of all undefined derivatives from

the integration process. This results in a state which is fully specified although it may

contain extraneous width in the intervals. To narrow the intervals, the constraints are used

to narrow the intervals of all possible values repeatedly until no more changes occur or a

threshold is reached. During this analysis the new updated values of all variables are used

which help to narrow other variables within constraints. One technique that is also used

is Inverse Constraint Operations. This is described below.

7.4.1 Inverse Constraint Operations

Inverse Constraint Operations is the process of applying the inverse, or inverses, of a

constraint on a tuple. The aim is to discard more inconsistent values and minimise the

width of all intervals within the constraint resulting in fewer spurious behaviours being

generated. For most constraints there is at least one associated inverse constraint which

is arithmetically inverse. For example, the addition constraint has two inverse constraints

defined as shown below:

A = B + C



7.4. Non-Constructive Interval Simulation 105

has the inverse constraints:

B = A − C

C = A − B

It may not be sufficient to merely calculate the interval for Abased on the values of B

and C since the calculated result may help in the reduction ofthe interval width of the

other variables. Applying the inverse constraints helps reduce the interval width of all

variables within the constraint, not just the left hand sidevariable. It also reduces the

number of times the model constraints need to be looped before no changes are apparent

(as described in chapter 6.4.1). If a constraint does not have an inverse then this process

is skipped for that constraint.

The following example shows how using the inverse constraints help reduce more than

just the interval of the left hand variables within a constraint. If the constraint below is

considered

A = B + C

and have initial values ofA = [5 6], B = [3 4], andC = [2.5 3.5] which are

calculated from the integration step. Applying the basic constraint arithmetic narrowsA

as shown below.B andC are used to determine what the consistent range of values forA

could be.

[5.5 7.5] = [3 4] + [2.5 3.5]

howeverA = [5 6] from integration therefore taking the intersection of the two ranges

narrowsA to becomeA = [5.5 6]

To narrow the rest of the variables the inverse constraints should be used. The first one is

taken:

B = A − C
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then the interval for B can be narrowed as shown:

[2 3.5] = [5.5 6] − [2.5 3.5]

but from integration,B = [3 4]. Taking the intersection of the intervals givesB =

[3 3.5].

Finally, using the last inverse constraint:

C = A − B

the interval for C may also be narrowed as shown:

[2 3] = [5.5 6] − [3 3.5]

butC = [2.5 3.5] from integration therefore taking the intersectionC = [2.5 3]

This now results in all variables being narrowed as much as possible as shown:

[2.5 3] = [5.5 6] − [3 3.5]

After this process the intervals forA, B andC are narrowed as much as possible when

reasoning over this constraint alone. However, these updated values may result in further

narrowing in other constraints; hence the process is repeated until no more changes are

made in the whole model or a threshold is reached. Due to the narrowing of intervals using

this Inverse Constraint Operations, not much looping of thewhole model is required.

This process could be parallelised since each inverse constraint can be carried out inde-

pendantly of the others however the overhead of creating andsynchronising threads for
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such a small process would mean that the benefits would be small at best.

7.5 Fuzzy Interval Simulation

This section describes the different simulation strategies used in JMorven for simulating

fuzzy numbers as real intervals.

7.5.1 Basic Interval Simulation

The most basic mode of simulation in JMorven is a straightforward interval simulation

engine. This mode uses the interval arithmetic defined in table 7.1, the Inverse Constraint

Operations discussed in section 7.4.1 andn-th order Taylor Series is used to integrate cur-

rent values to predict the successor values (wheren is equal to the number of derivatives

defined for the variable).

The initial state is defined for timet = 0. The user is asked for a time-step ofδt and a

total time to simulate overttot therefore there will be

num =
ttot

δt

distinct time steps thereforenum distinct states created during the process of simulation.

At each time-step all derivatives of all variables are set toan initial range equal to[∞ −

∞] and stored in the repository. Once the integration phase hascompleted, all derivatives

are set in the repository with the following trivial processsettingminimise to false (this

is the process of taking the union of all values in the qualitative auxiliary variables):
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deffun: updateInterval

params:

float: newMin newMax t

string: var

int: deriv

boolean: minimise

old = getInterval for deriv of var at t

if minimise XOR (newMin > old.min)

old.min = newMin

if minimise XOR (newMax < old.max)

old.max = newMax

When constraining and narrowing intervals using the Inverse Constraint Operations, the

above process is repeated but withminimise set to true to ensure the intervals narrow

(this is the process of taking the intersection of the valuesof qualitative auxiliary vari-

ables).

Even with these extra measures to reduce spurious trajectories, the intervals widen over

time. This interval divergence is observed more as the initial interval increases. The out-

put from this mode is complete but not sound, i.e. all of the correct solutions are bounded

by the output intervals however spurious solutions are alsoincluded in the output.

7.5.2 Sub-Interval Simulation

Several methods were researched to find ways to decrease the amount of interval diver-

gence for simulated trajectories. One method which was found to be successful was

Sub-Interval Simulation. In this process, each of the intervals are divided intox regularly
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spaced distinct sub-intervals that cover the whole original interval. These intervals do

not overlap and if the union of all sub-intervals is taken theoriginal interval is restored.

This is guaranteed to bound all real solutions of the problemas proved by Moore (Moore,

1966):

A ⊂ B −→ f(A) ⊂ f(B)

States are generated each having a unique combination of allsub-intervals. Each state

forms the initial state for a simulation to proceed using thebasic interval simulation strat-

egy. Since JMorven reasons about fuzzy numbers, a strategy has to be devised to output

a fuzzy trajectory. For each variable, if the sub-interval to be simulated is completely

bounded by the interval[a b] (wherea andb are the two parameters of the fuzzy four-

tuple [a b alpha beta]) then the interval is considered as an inner range, otherwise the

interval is considered as an outer range. These inner and outer ranges are combined to

form the Twin-Interval fuzzy numbers as described in section 7.1.

The motivation for this technique was that the width of the initial interval has a direct

influence on the amount of divergence on simulated trajectories. Initial intervals which are

narrower suffer less divergence over time, hence having a method which is guaranteed to

bound all solutions but diverge less is desired. As the sub-interval widths tend to zero, the

output trajectories tend toward the real solution with no unnecessary interval divergence.

Hence, this method is complete but not sound however soundness is achieved as the width

of the sub-intervals tend to zero. Figure 7.1 shows the simple oscillator model defined in

section 5.1 simulated with an original interval and severalsub-interval simulations with

the number of sub-intervals being increased.

The advantage of this process is clear, however there is one disadvantage to the approach.

Due to each interval being divided into sub-intervals thereis an exponential number of

initial states to simulate from. This seems to be a major problem at first, however dur-

ing experimental testing one behaviour was observed that reduces the number of states
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Figure 7.1: Undamped spring model simulated using the sub-interval method.
This shows the simulated trajectories of the spring model amplitude against time. The

interval shown in black is the spring model simulated using the basic interval simulation
strategy. The interval shown in blue shows the same problem using the sub-interval

method splitting the original interval into ten distinct sub-intervals. Similarly, the green
interval uses 100 sub-intervals and finally the red intervalsimulates with 1000

sub-intervals.

greatly. The observation is that not all initial states are consistent once the original inter-

vals are split. This reduces the number of simulations to be executed making this process

more feasible than originally thought. One other method to decrease execution time is

to take advantage of the parallel framework of JMorven. Since each initial state can be

simulated individually, it is trivial to make this method benefit from parallelisations. The

only interaction between execution units is the updating ofintervals after integrating and

constraining occurs which occupies a very small fraction ofthe whole simulation pro-

cess therefore close to linear speed-up is possible. The results of the parallelisations are

discussed in more detail in chapter 8.5.4.
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7.5.3 Monte-Carlo Interval Simulation

Another method to simulate intervals is proposed using Monte-Carlo methods (Rubin-

stein, 1981). For each interval a number of sub-intervals are chosen at random with a

very small initial width. Each sub-interval is then simulated individually and the results

of each simulation are used to update a central simulation repository containing the union

of all fuzzy intervals for all variables. The motivation behind this is that due to the very

small initial intervals the simulated trajectories will not suffer from much divergence.

Also, the random intervals should show more of the real solutions quicker than the sub-

interval method. The number of iterations can be set to a threshold, however the process

can be stopped at any time if the desired output is met.

Monte-Carlo techniques have been criticised for being slowand missing combinations of

inputs (Kahaner et al., 1989). JMorven addresses these issues; firstly, since each initial

state can be simulated individually as before, parallelisations can be used to speed up the

process dramatically. The problem with missing combinations is less of a problem in

JMorven since each simulation reasons about an interval. This has two benefits:

• Since intervals are used, it is more likely to cover the wholeoriginal interval as a

finite number of intervals can be used to recreate the interval

• Due to interval calculations diverging, the output trajectory bounds more than just

the real solution of the initial intervals, hence the missing combinations are likely

to be bounded by these extraneous inclusions.

Theoretically the Monte-Carlo Interval Simulation methodis complete as the number of

iterations tends toward infinity. However it is not sound as there is still a degree of interval

divergence apparent due to each iteration having an initialinterval width greater than zero.
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7.6 Point simulation

Point simulation is defined in JMorven as simulating with allintervals having zero width,

i.e. real numbers. These points are simulated precisely andthe trajectory remains with

zero width over all time. Point simulation itself can therefore be thought of as a traditional

numerical simulation technique and offers the same advantages and disadvantages. The

main advantage is that a dynamic system can be simulated precisely for the precisely

known initial state. The disadvantage is that this method alone cannot reason with any

imprecision. This method can be used to make use of its advantage and overcome the

disadvantage by approximating an interval as a group of points. The following subsections

discuss several methods in which this is implemented.

7.6.1 Extreme Point Simulation

The Extreme Point Simulation method uses the Point Simulation method to simulate from

a number of states. The intervals in the initial state are used to create two points, one at

each extreme of the interval.

The motivation behind this method is that there is no interval divergence in each of the

simulations hence the final output should have no divergence. Taking the extreme points

of each interval gives an approximate range of possible values whilst maintaining an effi-

cient method.

This method is sound but incomplete in that the solution found contains no spurious so-

lutions but it does not cover every possible solution. A method which improves upon the

completeness is proposed in the next section.
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7.6.2 Regular-Spaced Point Simulation

As with the sub-interval method, the Regular-Spaced Point Simulation method takes each

interval in the initial state and splits it into a number of states. These states contain a

number of points regularly spaced which approximates the interval.

The motivation behind this is that the point method guarantees no unnecessary divergence

and using a set of points for each interval should cover most of the possibilities for the

final solution.

As the number of points increases the final solution tends toward the real solution, hence

this method is theoretically sound and complete as the number of points tends to infinity.

This is due to each point being infinitesimally close to the neighbouring point so that no

values are missed out. Since points are being simulated, there is no initial interval width

therefore no unnecessary divergence occurs.

As with the sub-interval method, this method is exponentialin the number of intervals

however it also has the benefit that not every state will be consistent and it can also benefit

from parallelisations as shown in 8.5.4.

7.6.3 Monte-Carlo Point Simulation

The final method of simulation in JMorven uses Monte-Carlo methods to simulate a num-

ber of points from the initial state intervals. Each interval is taken and a number of points

are chosen at random within the bounds of the interval. Each state is simulated using the

Point Simulation approach.

The motivation behind this method was to combine the advantages of all other methods
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of simulation in JMorven. Using points guarantees that the solution is sound and us-

ing Monte-Carlo methods makes the solution tend to completeness more efficiently than

Regular-Spaced Point Simulation. This method can also be parallelised to benefit from

parallel machines as shown in 8.5.4.

7.7 Parallel Simulation

The simulation process of a single point or interval can be carried out in a small amount

of time. The extended methods described above use multiple instances of this simulation

method hence run slower; therefore some method is required to speed up the process.

Since each instance can be executed independently it can be executed in its own parallel

unit. All of the above methods (apart from basic interval simulation) can benefit from

parallelisations. A number of containers are created equalto the number of execution

units available and each initial state is distributed equally among these containers. Each

container is then executed in its own execution unit and a single repository of intervals is

updated from the output of each simulation.

7.8 Summary

Simulation of intervals is not a trivial process especiallywhen required to deal with alge-

braic loops. JMorven defines a number of non-constructive simulation approaches which

are summarised in table 7.2. The performance of each of theseis discussed in chapter 8.5
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Approach Sound? Complete? Comments

Basic Interval N Y Rapid interval divergence occurs
Sub-Interval Y∗ Y Less divergence but computationally

expensive
Monte-Carlo Interval N Y∗∗ Still suffers from divergence

Extreme Point Y N No divergence but doesn’t cover all
real solutions

Regular-Spaced Point Y Y∗∗ No divergence, close to covering
all real solutions but slow

Monte-Carlo Point Y Y∗∗ No divergence, close to covering
all real solutions most efficiently

Table 7.2: Summary of Simulation Approaches used in JMorven
∗ Soundness is achieved as the interval width tends to zero, i.e. as the number of intervals

tend toward infinity.
∗∗ Monte-Carlo methods achieve completeness as the number of iterations tend toward
infinity. The Regular-Spaced method achieves this as the number of points tend toward

infinity.
In practice, tending toward infinity is not required; merelytending toward the resolution

of the floating point representation is required although this would still result in too
many iterations to complete in a reasonable amount of time.



Chapter 8

Results

The JMorven framework has been described in chapters 6 and 7.In this chapter several

experiments have been undertaken using the JMorven framework to test the hypotheses

made including:

• The use of parallel algorithms to speed-up all stages of execution.

• The use of auxiliary variables in a non-constructive environment.

• The use ofn-th Taylor Series for a better approximation to integration.

• Using several techniques to simulate fuzzy intervals.

• Displaying asymptotically sound and complete simulation of fuzzy intervals.

• Carrying out semi-quantitative and quantitative simulations using a qualitative

model.

• The ability to simulate on the spectrum from fully qualitative to fully quantitative.

The experiments conducted to test these hypotheses are shown below and the reasoning

behind them:
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• a verification test for the qualitative aspects of JMorven.

• a model with an algebraic loop simulated to show JMorven can reason with alge-

braic loops.

• speed-up benefits of the parallelisations in all qualitative stages.

• more accurate non-constructive integration usingn-th order Taylor Series and

demonstrating the ability to simulate quantitatively froma qualitative model.

• non-constructive numerical simulation methods for semi-quantitative and quantita-

tive models and showing that one method is asymptotically sound and complete.

This experiment also shows JMorven’s ability to use auxiliary variables within a

non-constructive environment.

• a model simulated on the spectrum from fully qualitative to fully quantitative.

• speed-up benefits of numerical simulations.

8.1 Qualitative Experiments

Since JMorven is capable of reasoning in a fully qualitativemanner, it is relevant to carry

out a basic experiment to ensure that the output is as expected with respect to its prede-

cessors FuSim (Shen, 1991) and Morven (Coghill, 1996). To recap, JMorven succeeds

Morven in that the underlying algorithms are implemented ina non-constructive man-

ner which allows JMorven to reason with general models regardless of whether they are

causally ordered or contain algebraic loops. Constructivetechniques were used in Mor-

ven as they were thought to generate fewer spurious behaviours however this was shown

not to be the case (Coghill, 1996) as the output from a constructive and non-constructive

algorithm are identical (Coghill and Chantler, 1999).

JMorven adds two main additional features which did not exist at all in its predecessors.
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The first being a parallel algorithm which allows JMorven to be executed in environments

where multiple execution units are available. This novel feature speeds up execution

greatly therefore allowing more complex model behaviours to be generated in less time.

Another addition to JMorven is a non-constructive numerical simulation algorithm which

can provide semi-quantitative and fully quantitative output behaviours (this stage can also

be carried out in parallel). The inclusion of such a simulation algorithm allows JMorven to

simulate output behaviours as accurately as possible with all of the available information.

This ranges from imprecise variable and parameter values using fuzzy numbers to exact

numerical simulations using points.

8.1.1 Envisionments

To verify the validity of the pure qualitative aspect of JMorven, the coupled tanks system

is used. This is shown diagrammatically in figure 8.1

Figure 8.1: Coupled tanks model
showing two tanks of water with heightsh1, h2 and their differenceh12. One
inflow tapqi1 and one outflow plugqo2 determine the flow in and out of the

tanks and the cross-flowqx describes the flow between them.
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and is described by equations below (the model is also shown in JMorven format in Ap-

pendix A.2):

qo2 = M+(h2)

qx = M+(h12)

h12 = h1 − h2

h′
1 = qi1 − qx

h′
2 = qx − qo2

The coupled tanks model was used to generate a total envisionment and complete envi-

sionment holding the exogenous variableqi1 = [+ 0]. The total envisionment produces

188 states and 19941 transitions. The complete envisionment results in a graph with 28

states with 71 transitions between them, and one equilibrium state as shown:

h1 = [+ 0 0]

h2 = [+ 0 0]

h12 = [0 0]

which is the expected result. The graph and state repositoryare shown in Appendix B.1

and Appendix C.2 respectively. This output has been compared to the output of Morven

and verified as correct. Although this was a trivial experiment to carry out it was necessary

to ensure the results of the JMorven qualitative reasoner matches that of its predecessor.
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8.1.2 Simulation

The verification of the qualitative simulation in JMorven was tested using a simple mass

on a spring system. This model is described by the following equation:

x′′ = F − mx

wherex′′ is the acceleration of the massm, x is the displacement of the mass from its

equilibrium position andF is the Force on the mass. The JMorven model can be found in

Appendix A.3. Figure 8.2 shows the directed graph within JMorven of the output of this

model when using the signs quantity space. From the graph, itis clear to see that some

sort of cyclic behaviour is apparent. Upon analysis of the state repository (see Appendix

C.1) it can be seen that this is indeed the oscillatory behaviour expected of the mass on a

spring.

Figure 8.2: Mass on a Spring Simulation Graph
Nodes represent states within the state repository and edges denote transitions
between states. Edges are directed from thick to thin to represent the direction
of the transition. Self transitions are not shown on the graph. The node shown

in red was the one chosen for the initial state.
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8.2 Algebraic Loops

JMorven uses non-constructive algorithms which have the benefit of being able to reason
with algebraic loops. This experiment uses a model of an electrical circuit defined by the
equations in section 2.4.1 and the JMorven model can be foundin appendix A.4. JMorven
loops round the constraints until all intervals are narrowed as much as possible as shown
in the worked example in section 2.4.2. This example was usedto test JMorven and the
following output was observed:

Starting simulation...

Before narrowing and constraining the initial state:

Variable: u3

Derivative: 0 Initial:u3:0:Set (0.0 , 100000.0 , 0.0 , 0.0)

After narrowing and constraining the initial state:

Variable: u3

Derivative: 0 u3:0:0.0:Set (50.0 , 50.0 , 0.0 , 0.0)

which is exactly as expected. To test handling algebraic loops with intervals the following

initial state was given to JMorven:

R1 = [1990 2010]

R3 = [19500 20500]

U0 = [99 101]

i2 = [0.014 0.016]
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The output from JMorven is show below:

Starting simulation...

Before narrowing and constraining the initial state:

Variable: u3

Derivative: 0 Initial:u3:0:Set (0.0 , 100000.0 , 0.0 , 0.0)

After narrowing and constraining the initial state:

Variable: u3

Derivative: 0 u3:0:0.0:Set (59.900314 , 67.32529 , 0.0 , 0.0)

JMorven calculated the value ofu3 to be [59.900314 67.32529] which can be verified

by working through the equations by hand. These simple testsshow that JMorven works

non-constructively and can reason with algebraic loops.

8.3 Analysis of Parallelisation Benefits

One of the major contributions of the JMorven framework is that of the parallel algo-

rithms for all major stages of qualitative analysis. As discussed in chapter 3, the optimal

performance of a parallel algorithm is linear and when the efficiency

E =
Sn

n
= 1

whereSn is the speed-up observed when running onn execution units. Platzner and

Rinner (Platzner et al., 1997) report an average speed-upS̄7 < 2 which is far from optimal.

This section discusses the results of the parallelisationswithin JMorven and how they

compare to the findings of Platzner and Rinner.
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8.3.1 Tuple Filter

The times were recorded using the average of five executions of the full coupled tanks

system with 21 quantities in the quantity spaces and 2 input flows and 2 output flows as

shown in figure 8.3.

Figure 8.3: Full Coupled tanks model
showing two tanks of water with heightsh1, h2 and their differenceh12. Two inflow taps
qi1, qi2 and two outflow plugsqo1, qo2 determine the flow in and out of the tanks and the

cross-flowqx describes the flow between them.

The Tuple Filter occupies approximately 5% of the running time of the qualitative anal-

ysis phase. Parallelisations aim to make it execute more quickly when using multiple

execution units. The results achieved are summarised belowin table 8.1. The benefits of

the parallelisations are not as much as initially thought however due to the small amount

of time of execution of the tuple filter, the implementation was not optimised (the tuple

filter takes less than 5% of the running time of the QA phase andapproximaitely 1% of

the total running timwe). It can be seen from the table that there is a benefit from the par-

allelisations; the implementation could be optimised to achieve closer to linear speed-up.

The method used to parallelise the tuple filter has a few drawbacks in that the number of

execution units to be used is limited by the number of constraints in the model. This means

that the maximum number of execution units to be utilised depends on the complexity



8.3. Analysis of Parallelisation Benefits 124

number of execution units,n
1 2 3 4 5 6 7 8

Time Taken (s) 4.744 4.085 3.600 3.197 2.693 2.521 2.336 2.183
Speed-up,Sn 1.000 1.161 1.318 1.484 1.762 1.882 2.031 2.173
Efficiency,E 1.000 0.581 0.493 0.371 0.352 0.314 0.290 0.272

Table 8.1: Parallelisation Benefits of the JMorven Tuple Filter

of the model. Also, in a worst-case scenario, there would be one more constraint than

number of execution units available, and all tuples are filtered in exactly the same time

resulting in the tuple filter taking twice as long to execute than it would with just one less

constraint.

This limitation is not too great a problem since the tuple filter takes a very small amount of

time to complete especially for simple models with a small number of constraints. As the

model grows in complexity, so does the number of constraints; therefore the maximum

number of usable execution units is also increased.

8.3.2 Pairwise Filter

The pairwise filter is the least computationally expensive stage of the qualitative analysis

phase. The times were recorded using the average of five executions of the full coupled

tanks system with 21 quantities in the quantity spaces and 2 input flows and 2 output

flows. Due to the small execution time there is very little benefit from the parallelisations

as can be seen in table 8.2.

number of execution units,n
1 2 3 4 5 6 7 8

Time Taken (s) 0.646 0.455 0.382 0.339 0.356 0.360 0.374 0.344
Speed-up,Sn 1.000 1.420 1.691 1.906 1.815 1.794 1.727 1.878
Efficiency,E 1.000 0.710 0.564 0.477 0.363 0.299 0.247 0.235

Table 8.2: Parallelisation Benefits of the JMorven PairwiseFilter

If there areC constraints in the model, then there will be at mostC2−C possible pairings

of constraints to be filtered in the pairwise filter. This suffers from the same drawbacks as
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the tuple filter however there are more pairs to be executed than constraints in the tuple

filter so the limitations are not so apparent.

The results look positive for the first half of the table, using 4 processors over 1 takes

around half the time to execute, however the benefits then plateau. This is due to the small

amount of time taken for this stage since there is not much work to be done. The algorithm

could be optimised to allow for a greater benefit from the parallelisations but since the

state generator is by far the most expensive stage, most of the effort was concentrated on

it.

8.3.3 State Generator

The state generator in JMorven is the most computationally intensive stage, occupying

approximately 95% of the running time of the QA phase therefore this is the most im-

portant stage for which to optimise parallelisations. The times were recorded using the

average of five executions of the coupled tanks system with 9 quantities in the quantity

spaces and 1 input flow and 1 output flow. The results are summarised in table 8.3.

number of execution units,n
1 2 3 4 5 6 7 8

Time Taken (s) 41.452 20.631 14.689 11.645 9.524 8.484 8.214 6.830
Speed-up,Sn 1.000 1.999 2.822 3.560 4.352 4.886 5.047 6.069
Efficiency,E 1.000 1.000 0.941 0.890 0.870 0.814 0.721 0.759

Table 8.3: Parallelisation Benefits of the JMorven State Generator

It can be seen that there is a large performance increase fromthe parallelisations in the

state generator. Using eight execution units results in an observed speed-up greater than

six times over the sequential version which is a huge benefit.The speed-up is close to

linear. However, there is a drop in efficiency which could be due to communication costs

from the master node to the child parallel units, although itis not known how this could

be tested. There is another area where the parallel algorithm is not fully utilised - for

the first few iterations of a simple model, there are not enough tuples to make use of the
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maximum number of execution units available, therefore themaximum speed-up will not

be observed during these iterations. This limit is not apparent after the first few iterations

as all execution units can be used and hence optimal speed-upcan be obtained from then

on. The machine on which tests were carried out is an eight processor Sun server running

Solaris 5.8. The threading model in this version of Solaris is quite old and it is thought

that a newer version may show even greater benefits from the parallelisations.

Since the state generator is the most computationally expensive stage in qualitative anal-

ysis; this means that even if only the state generator were implemented in parallel the

whole process would be speeded up greatly. There is no sharedmemory used in this algo-

rithm for generating states therefore the algorithm would also work well in a distributed

computing environment.

8.3.4 Transition Analysis

The transition analysis phase was also parallelised. This is responsible for calculating

the transitions between states. Table 8.4 shows the resultsof the parallelisations. The

model used was the coupled tanks model with nine quantities in the quantity space for

each variable and one input and output, however theα-cut was set to zero to obtain the

maximum number of transitions possible. There were 755 states with 13966 transitions

in this test.

number of execution units,n
1 2 3 4 5 6 7 8

Time Taken (s) 8.466 4.598 3.489 2.750 2.394 2.170 1.905 1.677
Speed-up,Sn 1.000 1.841 2.426 3.079 3.536 3.901 4.444 5.048
Efficiency,E 1.000 0.921 0.809 0.770 0.707 0.650 0.635 0.631

Table 8.4: Parallelisation Benefits of the JMorven Transition Analysis

The transition generation shows very good benefits from the parallelisations. This stage

occupies a lot of the overall execution time of an envisionment, typically over 50% if

transitions are required.
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8.3.5 Qualitative Parallelisations Summary

The qualitative stages of JMorven have been parallelised and the results of each individual

stage have been presented above. For an envisionment with transitions calculated the QA

phase occupies just under 50% of the total runtime leaving just over 50% for the TA phase.

The QA phase is dominated by the State Generation which typically occupies about 95%

of the runtime. The transition generation (the only stage inTA) and state generation stages

together dominate the total runtime therefore these are thestages which are required to

show the greatest benefits from parallelisations. From the results, it is clear that these

two stages do benefit greatly from the parallelisations. Thestate generator shows the

biggest improvements; this is due to most optimisations being undertaken on this stage.

The transition generation suffers a little in that it does not display as much of a speed-up

as the state generator. The tuple and pairwise filters have a good theoretical algorithm for

parallel computation however are let down by the implementation in JMorven. There are

still benefits from the parallelisations showing that it is possible to speed-up these stages

too, but since these stages do not occupy much of the total running time they have not

been optimised like the transition and state generators.

8.4 n-th Order Taylor Series Integration

JMorven usesn-th order Taylor Series to integrate in a non-constructive manner. The

following example shows the difference between using first order (Euler Integration) and

second order Taylor Series Expansions to simulate a simple mass on an undamped spring

model. The model is described by the following equation:

x′′ = F − mx
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Figure 8.4: Undamped spring model simulated using Euler Integration.
Quantitative simulation of the mass on a spring showing the trajectory ofx

Figure 8.5: Undamped spring model simulated using second order Taylor Series.
Quantitative simulation of the mass on a spring showing the trajectory ofx

This qualitative model is given the quantitative initial state specifyingx = 1, x′ = 1, x′′ =

−1. JMorven can simulate this quantitatively from the quantitative initial state with no

modification to the qualitative model. Figure 8.4 shows the simulated behaviour using

non-constructive Euler Integration. The model is undampedand has no external forces

therefore the amplitude of oscillations should remain constant however due to errors in

the integration approximations the amplitude is unstable and is increasing exponentially.

Figure 8.5 shows the same model but using a second order non-constructive Taylor Series

to approximate the integration step. It can be seen that the amplitude of oscillations remain

far more stable. From this simple experiment, it is clear that when using a higher order

integration estimate, it is possible to provide more accurate simulations.
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8.5 Fuzzy Interval Simulation

In addition to qualitative simulation, JMorven also presents a framework for simulating at

a semi-quantitative level and fully quantitative level. The fuzzy calculations are based on

using intervals to depict fuzzy numbers as detailed in chapter 7.1. Setting these intervals

to have zero width results in a fully quantitative simulation. The results of each method

and a brief discussion is presented below with a more in-depth discussion and conclusion

presented in chapter 9.

8.5.1 Simulation Methods Using Real Intervals

This section discusses the results of the simulation modes in JMorven that use real inter-

vals for simulating trajectories of models. The model used to test out the semi-quantitative

simulations is simple mass on a spring. The model description can be found in Appendix

A.3. The model was simulated using the initial values ofx = 1, x′ = 1; these are precise

values with intervals of zero width hence JMorven carried out a fully numerical simula-

tion to obtain the output graph as shown in figure 8.5.

8.5.1.1 Basic Interval Simulation

The mass on a spring was simulated with an initial state specifying x = [0.9, 1.1, 0.05, 0.05],

x′ = [1] andF = [0] and the rest of the values remain unspecified. The basic interval

simulation output can be seen in figure 8.6. The simulation isof the first ten seconds from

the initial state. It can be seen that even with a fairly precise input fuzzy interval quite a

lot of excessive widening occurs. This output is not very useful as it is not apparent that

any of the expected oscillations occur. This demonstrates the problem with basic interval

simulation.
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Figure 8.6: Basic Interval Simulation of Mass on a Spring
Simulation of the mass on a spring showing the trajectory ofx. The blue line indicates

the simulated trajectory of thea− α fuzzy parameter. The yellow line is thea parameter,
green isb and red isb + β.

Figure 8.7: Sub-Interval Simulation of Mass on a Spring
Simulation of the mass on a spring showing the trajectory ofx using 10 sub-intervals
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Figure 8.8: Sub-Interval Simulation of Mass on a Spring
Simulation of the mass on a spring showing the trajectory ofx using 100 sub-intervals

Figure 8.9: Sub-Interval Simulation of Mass on a Spring
Simulation of the mass on a spring showing the trajectory ofx using 1000 sub-intervals



8.5. Fuzzy Interval Simulation 132

8.5.1.2 Regular-spaced Interval Simulation

One method that JMorven uses to simulate intervals more precisely is regular-spaced

interval simulations. The same inputs were used for these tests as in section 8.5.1.1.

Figure 8.7 shows the output using 10 sub-intervals. It is clear to see that the interval

still diverges; however it does not widen as rapidly as with basic interval simulation.

Figure 8.8 shows the output using 100 sub-intervals. It can be seen that now the interval

widens far less and some useful trajectory results can be seen. Figure 8.9 shows the

output with 1000 sub-intervals. From this set of outputs it can be seen that as the number

of sub-intervals is increased the resulting interval suffers less from excessive widening.

Theoretically, as the number of sub-intervals approaches infinity the output trajectory will

approach the real solution since each interval will have infinitesimal width. The major

drawback with this method is that it takes a long time to execute since each sub-interval

needs to be simulated individually.

8.5.1.3 Monte-Carlo Interval Simulation

The best simulation method in JMorven that reasons with realintervals is the Monte-Carlo

Interval method. The results of the simulation with this method are shown in figure 8.10.

The advantages of this method are that the interval does not widen as rapidly as with

the sub-interval method even when using 1000 sub-intervalssince each iteration of the

Monte-Carlo method is defined as having a very small intervalwidth. Also the execution

time was far quicker as fewer iterations were required to obtain the output trajectory. The

disadvantages are that this method relies on random numberstherefore there will be subtle

differences between simulations of the same model with the same input parameters. Also,

this method is not guaranteed to bound all possible solutions although it will approximate

the output solution very closely.
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Figure 8.10: Monte-Carlo Interval Simulation of Mass on a Spring
Simulation of the mass on a spring showing the trajectory ofx using Monte-Carlo

methods

8.5.2 Simulation Methods by Approximating Intervals

This section discusses the results of the simulation modes in JMorven that approximate

intervals for simulating trajectories of models using groups of points. The model used to

test out the semi-quantitative simulations is the Van der Pol oscillator. This is described

by the following equation:

ẍ = −P (x2 − 1)ẋ − Qx

The model description can be found in Appendix A.5. This model utilises auxiliary vari-

ables to ensure no unnecessary divergence of the intervals takes place, hence these tests

also verify the ability of JMorven to use auxiliary variables in a non-constructive environ-

ment.

The experiment was simulated using the initial values ofx = 1, x′ = 1, P = 1 and
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Q = 1; these are precise values with intervals of zero width henceJMorven was used to

carry out a fully numerical simulation to obtain the output graphs as shown in figures 8.11

and 8.12. The simulations are carried out for 40 seconds after the initial state.

8.5.2.1 Extreme Points Simulation

There are some methods included in the JMorven framework to simulate by approx-

imating intervals. The first one simulates the endpoints of each interval specified

in the initial state. The Van der Pol oscillator was simulated specifying x, x′ =

[0.5, 1.5, 0.25, 0.25] andP, Q = [1] in the initial state with all remaining values

left unspecified. Figures 8.13 and 8.14 show the output trajectories of the model forx and

x′ respectively. Using the extreme points method provides an output with no widening of

the intervals but not all of the solutions are bound by the output. However this method

does provide a very efficient approximation to the desired output. The implementation of

this method takes the extreme points of the fuzzy interval as[(a− α) (b + β)] therefore

the output is a single interval rather than fuzzy.

8.5.2.2 Regular-Spaced Point Simulation

The regular spaced point method is similar to the regular-spaced interval method except

that points at regular spaces are used instead of regular spaced-intervals. This aims to

approximate the interval as a group of points so that the output will bound close to all

solutions but with no excessive widening of the output trajectory since points are being

simulated instead of intervals. Figures 8.15 and 8.16 show the output of the regular-spaced

point method using five points to approximate each interval.Since there are two intervals

in the initial state of the Van der Pol oscillator for this problem there are 25 unique combi-

nations of points to simulate. The output provides a very good trajectory with no widening

and the intervals appear relatively close to the expected output. On a close inspection it
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Figure 8.11: Numerical Simulation of Van der Pol Oscillator
Quantitative simulation of the Van der Pol oscillator showing the trajectory ofx

Figure 8.12: Numerical Simulation of Van der Pol Oscillator
Quantitative simulation of the Van der Pol oscillator showing the trajectory ofx′

Figure 8.13: Extreme Points Simulation of Van der Pol Oscillator
Simulation of the Van der Pol oscillator showing the trajectory of x using the extreme

points method

Figure 8.14: Extreme Points Simulation of Van der Pol Oscillator
Simulation of the Van der Pol oscillator showing the trajectory of x′ using the extreme

points method
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Figure 8.15: Regular-Spaced Points Simulation of Van der Pol Oscillator
Simulation of the Van der Pol oscillator showing the trajectory of x using the

regular-spaced points method with 5 points per interval. The yellow line
indicates the simulated trajectory of thea − α fuzzy parameter. The blue line is

thea parameter, red isb and green isb + β.

Figure 8.16: Regular-Spaced Points Simulation of Van der Pol Oscillator
Simulation of the Van der Pol oscillator showing the trajectory of x′ using the

regular-spaced points method with 5 points per interval.

Figure 8.17: Regular-Spaced Points Simulation of Van der Pol Oscillator
Simulation of the Van der Pol oscillator showing the trajectory of x using the

regular-spaced points method with 20 points per interval.

Figure 8.18: Regular-Spaced Points Simulation of Van der Pol Oscillator
Simulation of the Van der Pol oscillator showing the trajectory of x′ using the

regular-spaced points method with 20 points per interval.
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can be seen that there are a few errors around the peak of each oscillation. Figures 8.17

and 8.18 show the same method except using 20 points to approximate the interval. There

is a noticeable difference between the two around the peaks of oscillations in the trajec-

tory for x′ but the main difference is observed in the first oscillation.There is very little

difference between the outputs forx. Approximating the intervals using five to ten points

offers a reasonable output trajectory executed in a reasonable length of time, however as

the number of points is increased the results of the simulation tend to become sound and

complete.

8.5.2.3 Monte-Carlo Point Simulation

The final mode for semi-quantitative simulation in JMorven is Monte-Carlo Point Sim-

ulation. This method offers the benefits of being able to produce simulations with no

excess widening of the intervals. It also produces an outputclose to being sound and

complete within the quickest time of any of the other methods. As such it is the mode

most recommended for use if very accurate simulations are required.

Figures 8.19 and 8.20 show the output of the Monte-Carlo method with 100 initial states.

It can be seen that these graphs are very similar to the regular-spaced point method with

20 points however the Monte-Carlo version takes far less time to execute making it a

better choice. This makes the Monte-Carlo Point Simulationtechnique a good method

to approximate the outcome of the sound and complete simulation of the regular-spaced

point technique.. The disadvantage with this method however is that since it uses random

points within the intervals, no two outputs will be identical.

To test the Monte-Carlo method further, the Van der Pol oscillator was simulated again ex-

cept using the following initial values:x, x′, Q = [1] andP = [0.9, 1.1, 0.1, 0.1].

Having a parameter as an interval causes a different form of output as can be seen in fig-

ures 8.21 and 8.22. The initial values forx andx′ are real numbers hence have no width
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Figure 8.19: Monte-Carlo Points Simulation of Van der Pol Oscillator
Simulation of the Van der Pol oscillator showing the trajectory of x using the

Monte-Carlo points method with 100 initial states.

Figure 8.20: Monte-Carlo Points Simulation of Van der Pol Oscillator
Simulation of the Van der Pol oscillator showing the trajectory of x′ using the

Monte-Carlo points method with 100 initial states.

Figure 8.21: Monte-Carlo Points Simulation of Van der Pol Oscillator
Simulation of the Van der Pol oscillator with fuzzy parameter P showing the
trajectory ofx using the Monte-Carlo points method with 100 initial states.

Figure 8.22: Monte-Carlo Points Simulation of Van der Pol Oscillator
Simulation of the Van der Pol oscillator with fuzzy parameter P showing the
trajectory ofx′ using the Monte-Carlo points method with 100 initial states.
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Figure 8.23: Monte-Carlo Points Simulation of Van der Pol Oscillator
Simulation of the Van der Pol oscillator with all initial values and parameters
having a fuzzy interval showing the trajectory ofx using the Monte-Carlo.

Figure 8.24: Monte-Carlo Points Simulation of Van der Pol Oscillator
Simulation of the Van der Pol oscillator with all initial values and parameters
having a fuzzy interval showing the trajectory ofx′ using the Monte-Carlo.

however since one of the parameters has interval width it causes the values ofx andx′ to

widen. These outputs have be verified with the results reported in (Keller, 1999) show-

ing that JMorven produces the correct results and thereforealso showing that auxiliary

variables can be used in a non-constructive environment.

The final test for the fuzzy interval simulation was using theMonte-Carlo Points method

on the Van der Pol oscillator withx, x′, P, Q = [0.9, 1.1, 0.05, 0.05] which is sim-

ilar to what a real problem might be like; i.e. all parametersand initial values having a

fuzzy interval. The simulated trajectories can be found in figures 8.23 and 8.24.

The outputs show that the initial interval is very narrow andhow it widens with time. This

is not due to errors in simulation but due to the parameters being incompletely specified.

The simulation still results in a very useful output to determine how the system could
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behave in reality. Once a graph like this has been created it is possible to use it for fault

detection; the initial values may represent the acceptabletolerances in the system.

8.5.3 Simulation Spectrum

This section briefly demonstrates JMorven simulating in thespectrum from fully qualita-

tive to fully quantitative using the simple mass on a spring model as used in section 8.1.2

and defined by the following equation:

x′′ = F − mx

whereF is the external force applied on the massm, x is the displacement of the mass

and (x′′ is the acceleration of the mass. For all experiments, the force was set to zero and

the mass is set as unity.

8.5.3.1 Qualitative Simulation

The qualitative simulation results in the following state transitions in order:

x = [+, +,−] → [+, 0,−] → [+,−,−] → [0,−, 0] → [−,−, +] → [−, 0, +] →

[−, +, +] → [0, +, 0]

and then loops round again displaying oscillatory behaviour (the qualitative simulation

figure is shown in figure 8.2). Even with the course quantity space of the signs it is still

possible to observe a trend in the behaviour of the simulation.

8.5.3.2 Semi-Quantitative Simulation

The initial state was specified with fuzzy valuesx = [0.9 1.1 0.05 0.05] andx′ =

[0.95 1.05 0.025 0.025]. The simulated trajectory is shown in figure 8.25.
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Figure 8.25: Semi Quantitative Simulation of the Mass on a Spring model

It can be seen that there are oscillations in the simulation and that the mass stays within

a small threshold at all times. This is due to the intervals specified in the initial state;

if the interval was wider so would the threshold be and similarly if the initial interval is

narrower the threshold would be narrower too.

8.5.3.3 Quantitative Simulation

The initial state was specified with exact valuesx = 1 and x′ = 1. The simulated

trajectory is shown in figure 8.26.

Figure 8.26: Quantitative Simulation of the Mass on a Springmodel
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This simulation shows that since the initial state was specified with exact numerical in-

formation then the simulation results in a definite trajectory too. These experiments show

that JMorven is capable of simulating on the spectrum from fully qualitative using the

signs quantity space, through semi-quantitative adoptingfuzzy numbers, and fully quan-

titative using exact numbers.

8.5.4 Parallel Semi-Quantitative Simulation

The JMorven parallel framework can be used to speed-up the semi-quantitative simulation

too. To test the parallelisations, the Van der Pol oscillator was used with the Regular

Spaced Point simulation method with ten points per interval. The results of the times

taken are summarized in table 8.5

number of execution units,n
1 2 3 4 5 6 7 8

Time Taken (s) 88.155 50.177 39.625 30.012 26.388 22.716 18.288 17.210
Speed-up,Sn 1.000 1.757 2.225 2.937 3.341 3.881 4.820 5.122
Efficiency,E 1.000 0.879 0.742 0.734 0.668 0.647 0.689 0.640

Table 8.5: Parallelisation Benefits of JMorven Semi-Quantitative Simulation

It is clear to see that the parallelisations benefit the time taken for semi-quantitative sim-

ulation to execute. Running the same simulation on eight processors results in a speed-up

of over five times which is a great advantage.



Chapter 9

Discussion, Conclusions and Future

Directions of the JMorven Framework

9.1 Discussion

JMorven offers two major improvements to existing qualitative reasoning implementa-

tions; speeding up the execution by implementing parallelisations into the core algo-

rithms, and offering an advanced mechanism for simulating from fully qualitatively to

fully quantitatively in a non-constructive manner. JMorven is the only current qualitative

reasoner that benefits from parallelisations in every stage. It is also the only system that

can simulate on the spectrum from fully qualitative to fullyquantitative. It is also worth

mentioning that JMorven is also the only semi-quantitativesystem that uses automatic

n-th order methods for integration depending on the amount ofderivative information

provided, and it is the only system that uses auxiliary variables in a non-constructive

environment. Each of these novelties are discussed below.

JMorven was completely written from scratch and with parallelisations in mind. These

parallelisations were implemented for every major stage ofexecution and offer substantial
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gains over the sequential running time. In qualitative mode, the runtime is dominated by

two main stages; the state generator and the transition generator. As such, most effort was

concentrated on these areas to optimise the algorithms to achieve the greatest speed-up

from parallelisations. The state generator offers the greatest benefits displaying a speed-

up in excess of six times over the sequential running time when running on an eight

processor machine. The algorithm suffers slightly during the early iterations as there may

not be enough tuples to fully utilise all of the available execution units. This is only

apparent for the first few iterations of the state generator which take a small amount of the

total time of state generation. This is one reason why the speed-up is not linear. Another

reason may be due to the operating system used on the test machine. It is believed that

a more up-to-date version of the Solaris operating system would allow greater benefits to

be observed due to a better threading model. The transition generation displays a positive

speed-up too. However it is not quite as great as the benefits in the state generator. A

speed-up of over five times is observed when running on eight processors which is still

an excellent performance gain. The transition generation should theoretically allow very

close to linear speed-up however it is thought that the implementation of some of the core

methods in JMorven do not perform well in parallel which affects the performance. These

methods are used heavily in the tuple filter and pairwise filter stages which is why they

do not offer a major performance gain. Since these filters take a very small percentage

of time to execute efforts were not concentrated on optimising them. If time allowed,

optimising these methods might result in better benefits forthe filters and should also

improve the transition generation too. Overall, the qualitative stages have been shown to

benefit greatly from parallelisations therefore I suggest this strategy is valid for speeding

up the implementation of a qualitative reasoner.

The semi-quantitative simulation mode in JMorven allows models to be simulated with-

out precise information yet still produces very useful trajectories for the variables over

time. There are two main methods used to simulate semi-quantitatively; one which uses

real intervals and interval arithmetic and another which approximates intervals as a set
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of points. These two methods have similar sub-strategies which include extreme method,

regular-spaced methods and Monte-Carlo methods. Generally the extreme methods (Ba-

sic Interval and Extreme Points) offer a very quick output tobe generated but they are

not accurate. The Basic Interval method suffers from excesswidening of any intervals

due to the nature of interval arithmetic and the Extreme Points method does not bound

all solutions however it does not suffer from the intervals widening. The Basic Interval is

therefore complete in that it bounds all of the real solutions to the problem however it is

unsound as it also contains spurious behaviours in the form of interval divergence. The

Extreme Points method on the other hand is incomplete as it does not bound all solutions

however it is sound as it does not contain any spurious behaviours. This is true in general

of the two main techniques. All of the methods using real intervals are complete but not

sound and all of the methods that approximate intervals as groups of points are sound but

incomplete. The regular-spaced and Monte-Carlo point methods improve the solutions

and offer sound and complete results in the limiting cases when an infinite number of

points are used or when the interval is split into an infinite number of sub-intervals. In

reality, it is possible to generate a finite set of points or intervals with zero width since

numbers in computers have a finite representation. In this case, the results would be sound

and complete to the precision of the floating point number representation. The Regular-

Spaced Interval method allows the model to be simulated for longer before the intervals

diverge, and the Regular-Spaced Point approach bounds moreof the real solution as the

number of points increases. These methods achieve greater performance when more reg-

ular spaces are used, however this can take a very long time toexecute. To overcome this,

Monte-Carlo methods are also implemented which give a good trade-off between achiev-

ing close to the real solution whilst executing in a reasonable length of time. The best

approach appears to be the Monte-Carlo Point method which produces a solution very

close to the real one and in good time. The disadvantage of it is that it uses random num-

bers however with a sufficient number of iterations it is impossible to tell the difference

between two different Monte-Carlo simulations.
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To make the integration phase more accurate, several techniques were researched and it

was decided that, for non-constructive methods,n-th order Taylor Series was the best

choice. This uses all of the derivative information for eachvariable to estimate the suc-

cessor values after a time-stepδt. It was shown that when using second order methods

over first order methods, the accuracy of the integration increased dramatically. This al-

lows the modeller the design choice of adding extra derivatives to the model thus allowing

more accurate simulations to be carried out.

To allow accurate simulation in a semi-quantitative manner, JMorven adopts the use of

auxiliary variables. These variables are not mapped to any quantity space and thus do not

unnecessarily diverge any intervals when using them. Thesehave previously only been

implemented in a constructive environment where there are strict rules about the order-

ing of constraints. JMorven implements these and gets around the ordering constraints

by using Inverse Constraint Operations and looping round the constraints until no further

narrowing of the intervals can take place. It was found that if looping through the con-

straints was necessary then only a small amount was requiredtherefore the runtime is not

severely affected by this technique.

9.2 Conclusions

One aim of developing a new qualitative reasoner was to improve the runtime performance

by incorporating parallelisations throughout all of the main stages. Existing methods at-

tempted this, however they had a few drawbacks in that not allstages were parallelised

and that they were designed for very specific hardware setups. This motivated the de-

velopment of an abstract parallel architecture which wouldbe portable and allow it to

run on a wide variety of systems including single processor workstations, multi-processor

servers or in distributed network environments. After an analysis of the runtime of each
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phase in the qualitative reasoner, efforts were concentrated on the two stages which occu-

pied over 95% of the running time, although all stages have been parallelised. The results

show that the parallelisations offer a vast benefit over the sequential running time.

Auxiliary variables were implemented in the non-constructive algorithms of JMorven.

The difficulty with this is due to the non-causally ordered property of non-constructive

methods; an auxiliary variable’s value may be required to beused before being set. To

get around this JMorven loops around the constraints containing the auxiliary variable

updating the values until no more changes occur. JMorven also usesInverse Constraint

Operationswhich narrows the ranges of values more quickly thus there are fewer itera-

tions of the constraints required to calculate the precise values of auxiliary variables. The

output from JMorven was verified against the output of Morvenshowing that the use of

auxiliary variables in a non-constructive algorithm is possible.

An aim of JMorven was to allow it to reason on the spectrum fromfully qualitative to

fully quantitative while maintaining a non-constructive algorithm. The non-constructive

method is more general in that it does not require causally ordered models and would

allow models with algebraic loops to be simulated. This was not a trivial problem to solve

since interval arithmetic produces interval divergence. JMorven usesn-th order Taylor

Series for integration which allows the integration phase to be more accurate when there

is more derivative information available. There are several approaches to the simulation

problem presented in JMorven, each offering some advantages and disadvantages. From

the results it can be seen that it is possible to simulate fuzzy intervals in a non-constructive

manner. JMorven does this by approximating intervals as a group of points. This can take

a long time to simulate for naı̈ve approaches therefore a method based on Monte-Carlo

techniques was implemented. This produces excellent results in a reasonable amount of

time and is the method recommended for use.

Non-constructive methods allow reasoning with more general models that do not need to
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be causally ordered. This also allows models with algebraicloops to be dealt with. Since

JMorven uses non-constructive methods, the input models donot need to be causally or-

dered. One of the optimisations for speed in JMorven re-orders the constraints depending

on the number of valid tuples for each constraint. This meansthat internally the mod-

els are unlikely to be causally ordered; however, JMorven still continues to reason and

provide the expected results. This shows that qualitative reasoning and quantitative simu-

lation can be successfully carried out using non-constructive algorithms.

Overall JMorven has successfully met the original aims and provides a framework for use

in a large variety of systems requiring simulation with ambiguity or imprecision.

9.3 Future Work

Throughout the design and implementation of JMorven several features have been thought

of and hypothesised. These include:

• Qualitative Parallel Optimisations: The tuple and pairwise filters do not exhibit

many benefits from the parallelisations which is thought to be due to some of the

core methods in JMorven. Optimising these might allow them to show a similar

speed-up to the state and transition generators. Since these stages take a small

percentage of time to execute compared with the State Generator and Transition

Analysis, and time for the project did not allow, this has notbeen attempted.

• Speed-up of complete execution:It would be benificial to find out the speedup of

total execution time of running JMorven. Tests were only conducted for each stage

individually but seeing how the total execution time is affected by parallelisations

would be a benefit in showing their advantage.
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• Semi-Quantitative Parallel Optimisations: Semi-quantitative simulations could

be optimised by utilising a local repository of the intervals in each execution unit

instead of a global one. This would allow less mutexes and less communication

between execution units, therefore should display more benefits from the paral-

lelisations. This would be of greatest benefit when implemented in a distributed

network environment.

• Iterative Simulation: A strategy that could be used would be to create an itera-

tive method for semi-quantitative simulation in JMorven which would carry out the

simulations using regular-spaced methods but would iteratively simulate with more

points. This could be used to show a graph generated in real-time and as more it-

erations complete, the graph would be updated. For example,the Regular-Spaced

Interval method could start with two sub-intervals which would give a very approx-

imate output but then it could carry on to use ten sub-intervals and refine the output

once this had completed. This would offer a method that did not require estimating

how many sub-intervals to use as too few might not give a precise enough output,

however too many would take too long to execute. This method could be stopped

at any time when the output was sufficiently precise as decided by the user.

• Web Service:Deploying JMorven as a web-service would allow it to be used over

the internet and would be executed on large multiple-node networks. Since JMor-

ven has an abstract parallel architecture, it would be able to make best use of the

available resources and would provide an efficient solutionto simulation to a wide

user base.

• Scheduling Algorithm To run efficiently as a web service, or in an environment

where the processor power is not the same in every execution unit, some sort of

scheduling algorithm should be implemented.

• Genetic Algorithms: It is thought that genetic algorithms could be used along

with the Monte-Carlo methods to produce faster, more accurate output trajectories

for simulating fuzzy intervals.
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• Step-size refinementAt the moment JMorven uses a fixed step size for numerical

simulations. Using step-size refinement is a proven method to improve the accuracy

and/or the execution time of simulations. Adopting this technique would be a useful

addition to JMorven.

• Qualitative/Quantitative Refinement It is thought that the results of the quantita-

tive simulations could benefit the qualitative simulationsby removing some or all

of the spurious behaviours. It may also be possible that qualitative simulation could

help some of the interval methods of quantitative simulation by avoiding unneces-

sary interval divergence.

• n-tuple Fuzzy NumbersJMorven usesTwin Interval Fuzzy Numbersas a repre-

sentation for fuzzy numbers. This allows fuzzy numbers to bereasoned with using

standard interval arithmetic. This could be extended to have fuzzy numbers with

many intervals which would allow more precise fuzzy numbersto be simulated.

There have already been a number of additions to JMorven implemented by third parties

including:

• A graphical model builder

• A graphical qualitative behaviour viewer

• A natural language generator for output behaviours

• The inclusion of constraints using complex numbers

This shows that JMorven is an extensible framework and theseadditions should make

JMorven become a more powerful tool.
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Appendix A

JMorven Models

A.1 Single Tank Model
model-name: single-tank
short-name: fst

NumSystemVariables: 2
variable: qo range: zero p-max NumDerivatives: 1 qspaces: tanks-qs tanks-qs2
variable: V range: zero p-max NumDerivatives: 2 qspaces: tanks-qs tanks-qs2 tanks-qs2

NumExogenousVariables: 1
variable: qi range: zero p-max NumDerivatives: 1 qspaces: tanks-qs tanks-qs2

Constraints:
NumDiffPlanes: 2

Plane: 0 NumConstraints: 2
Constraint: func (dt 0 qo) (dt 0 V) NumMappings: 9

Mappings:
n-max n-max
n-large n-large
n-medium n-medium
n-small n-small
zero zero
p-small p-small
p-medium p-medium
p-large p-large
p-max p-max

Constraint: sub (dt 1 V) (dt 0 qi) (dt 0 qo)

Plane: 1 NumConstraints: 2
Constraint: func (dt 1 qo) (dt 1 V) NumMappings: 5

Mappings:
nl-dash nl-dash
ns-dash ns-dash
zero zero
ps-dash ps-dash
pl-dash pl-dash

Constraint: sub (dt 2 V) (dt 1 qi) (dt 1 qo)

NumVarsToPrint: 3 VarsToPrint: V qi qo



A.2. Coupled Tanks Model 163

A.2 Coupled Tanks Model
model-name: coupled-tanks
short-name: cpdt

NumSystemVariables: 5
variable: h1 range: zer pos NumDerivatives: 2 qspaces: tanks-qs tanks-qs2 tanks-qs2
variable: h2 range: zer pos NumDerivatives: 2 qspaces: tanks-qs tanks-qs2 tanks-qs2
variable: h12 range: neg pos NumDerivatives: 1 qspaces: tanks-qs tanks-qs2
variable: qx range: neg pos NumDerivatives: 1 qspaces: tanks-qs tanks-qs2
variable: qo range: zer pos NumDerivatives: 1 qspaces: tanks-qs tanks-qs2

NumExogenousVariables: 1
variable: qi range: zer pos NumDerivatives: 1 qspaces: tanks-qs tanks-qs2

Constraints:
NumDiffPlanes: 2

Plane: 0 NumConstraints: 5
Constraint: func (dt 0 qo) (dt 0 h2) NumMappings: 3

Mappings:
neg neg
zer zer
pos pos

Constraint: func (dt 0 qx) (dt 0 h12) NumMappings: 3
Mappings:

neg neg
zer zer
pos pos

Constraint: sub (dt 0 h12) (dt 0 h1) (dt 0 h2)
Constraint: sub (dt 1 h1) (dt 0 qi) (dt 0 qx)
Constraint: sub (dt 1 h2) (dt 0 qx) (dt 0 qo)

Plane: 1 NumConstraints: 5
Constraint: func (dt 1 qo) (dt 1 h2) NumMappings: 3

Mappings:
neg neg
zer zer
pos pos

Constraint: func (dt 1 qx) (dt 1 h12) NumMappings: 3
Mappings:

neg neg
zer zer
pos pos

Constraint: sub (dt 1 h12) (dt 1 h1) (dt 1 h2)
Constraint: sub (dt 2 h1) (dt 1 qi) (dt 1 qx)
Constraint: sub (dt 2 h2) (dt 1 qx) (dt 1 qo)

NumVarsToPrint: 3 VarsToPrint: h1 h2 h12
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A.3 Spring System Model
model-name: spring-system
short-name: spr

NumSystemVariables: 3
variable: d range: n-max p-max NumDerivatives: 1 qspaces: fuzzy-qs fuzzy-qs2
variable: x1 range: n-max p-max NumDerivatives: 2 qspaces: fuzzy-qs fuzzy-qs2

fuzzy-qs2
variable: x2 range: nl-dash pl-dash NumDerivatives: 2 qspaces: fuzzy-qs2 fuzzy-qs2

fuzzy-qs2

NumExogenousVariables: 1
variable: F range: n-max p-max NumDerivatives: 1 qspaces: fuzzy-qs fuzzy-qs2

Constraints:
NumDiffPlanes: 2

Plane: 0 NumConstraints: 3
Constraint: func (dt 0 d) (dt 0 x1) NumMappings: 9

Mappings:
n-max n-max
n-large n-large
n-medium n-medium
n-small n-small
zero zero
p-small p-small
p-medium p-medium
p-large p-large
p-max p-max

Constraint: func (dt 1 x1) (dt 0 x2) NumMappings: 5
Mappings:

nl-dash nl-dash
ns-dash ns-dash
zero zero
ps-dash ps-dash
pl-dash pl-dash

Constraint: sub (dt 1 x2) (dt 0 F) (dt 0 d)

Plane: 1 NumConstraints: 3
Constraint: func (dt 1 d) (dt 1 x1) NumMappings: 5

Mappings:
nl-dash nl-dash
ns-dash ns-dash
zero zero
ps-dash ps-dash
pl-dash pl-dash

Constraint: func (dt 2 x1) (dt 1 x2) NumMappings: 5
Mappings:

nl-dash nl-dash
ns-dash ns-dash
zero zero
ps-dash ps-dash
pl-dash pl-dash

Constraint: sub (dt 2 x2) (dt 1 F) (dt 1 d)

NumVarsToPrint: 1 VarsToPrint: d
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A.4 Algebraic Loop Model
model-name: LRcircuit
short-name: LR

NumSystemVariables: 1
variable: u3 range: zero p-max NumDerivatives: 0 qspaces: fuzzy9

NumExogenousVariables: 4
variable: R1 range: R-min R-max NumDerivatives: 0 qspaces: resistors
variable: R3 range: R-min R-max NumDerivatives: 0 qspaces: resistors
variable: U0 range: U-min U-max NumDerivatives: 0 qspaces: voltages
variable: i2 range: i-min i-max NumDerivatives: 0 qspaces: currents

NumAuxiliaryVariables: 3
variable: u1
variable: i3
variable: i1

Constraints: NumDiffPlanes: 1
Plane: 0 NumConstraints: 4
Constraint: mul (dt 0 u1) (dt 0 R1) (dt 0 i1)
Constraint: div (dt 0 i3) (dt 0 u3) (dt 0 R3)
Constraint: sub (dt 0 u3) (dt 0 U0) (dt 0 u1)
Constraint: add (dt 0 i1) (dt 0 i2) (dt 0 i3)

NumVarsToPrint: 1 VarsToPrint: u3
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A.5 Van der Pol Oscillator Model
model-name: VanDerPol-Oscillator
short-name: vdpo

NumSystemVariables: 2
variable: x1 range: n-max p-max NumDerivatives: 1 qspaces: fuzzy-qs fuzzy-qs
variable: x2 range: n-max p-max NumDerivatives: 1 qspaces: fuzzy-qs fuzzy-qs

NumExogenousVariables: 3
variable: one range: one one NumDerivatives: 0 qspaces: constants
Variable: P range: n-max p-max NumDerivatives: 0 qspaces: fuzzy-qs
Variable: Q range: n-max p-max NumDerivatives: 0 qspaces: fuzzy-qs

NumAuxiliaryVariables: 5
Variable: A
Variable: B
Variable: C
Variable: D
Variable: E

Constraints:
NumDiffPlanes: 1

Plane: 0 NumConstraints: 7
Constraint: func (dt 1 x1) (dt 0 x2) NumMappings: 9

Mappings:
n-max n-max
n-large n-large
n-medium n-medium
n-small n-small
zero zero
p-small p-small
p-medium p-medium
p-large p-large
p-max p-max

Constraint: mul (dt 0 A) (dt 0 Q) (dt 0 x1)
Constraint: mul (dt 0 B) (dt 0 x1) (dt 0 x1)
Constraint: sub (dt 0 C) (dt 0 one) (dt 0 B)
Constraint: mul (dt 0 D) (dt 0 P) (dt 0 x2)
Constraint: mul (dt 0 E) (dt 0 D) (dt 0 C)
Constraint: sub (dt 1 x2) (dt 0 E) (dt 0 A)

NumVarsToPrint: 2 VarsToPrint: x1 x2
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JMorven Diagrams

B.1 Coupled Tanks Graph

Figure B.1: Coupled Tanks Graph of Complete Envisionment



Appendix C

JMorven State Repositories

C.1 Spring System State Repository
=======================================

= S T A T E R E P O S I T O R Y

=======================================

--------------------

State UID: e-5-e-5

x2:{zer , zer , zer}

F:{zer , zer}

x1:{zer , zer , zer}

d:{zer , zer}

Successor States:

e-5-e5

Predecessor States:

e-5-e5

--------------------

State UID: h-8-6-5

x2: {pos , zer , neg}

F: {zer , zer}

x1: {zer , pos , zer}

d: {zer , pos}

Successor States:

9-9-3-5

Predecessor States:

p-7-9-5

--------------------

State UID: b-2-m-5

x2: {neg , zer , pos}

F: {zer , zer}

x1: {zer , neg , zer}

d: {zer , neg}

Successor States:
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j-1-p-5

Predecessor States:

3-3-j-5

--------------------

State UID: 6-6-b-5

x2: {zer , neg , zer}

F: {zer , zer}

x1: {pos , zer , neg}

d: {pos , zer}

Successor States:

3-3-j-5

Predecessor States:

9-9-3-5

--------------------

State UID: 9-9-3-5

x2: {pos , neg , neg}

F: {zer , zer}

x1: {pos , pos , neg}

d: {pos , pos}

Successor States:

9-9-3-5, 6-6-b-5

Predecessor States:

9-9-3-5, h-8-6-5

--------------------

State UID: 3-3-j-5

x2: {neg , neg , pos}

F: {zer , zer}

x1: {pos , neg , neg}

d: {pos , neg}

Successor States:

3-3-j-5, b-2-m-5

Predecessor States:

3-3-j-5, 6-6-b-5

--------------------

State UID: m-4-h-5

x2: {zer , pos , zer}

F: {zer , zer}

x1: {neg , zer , pos}

d: {neg , zer}

Successor States:
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p-7-9-5

Predecessor States:

j-1-p-5

--------------------

State UID: p-7-9-5

x2: {pos , pos , neg}

F: {zer , zer}

x1: {neg , pos , pos}

d: {neg , pos}

Successor States:

h-8-6-5, p-7-9-5

Predecessor States:

p-7-9-5, m-4-h-5

--------------------

State UID: j-1-p-5

x2: {neg , pos , pos}

F: {zer , zer}

x1: {neg , neg , pos}

d: {neg , neg}

Successor States:

m-4-h-5, j-1-p-5

Predecessor States:

b-2-m-5, j-1-p-5

--------------------------- End of State Repository

Number of states in repository = 9 (13 transitions)
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C.2 Coupled Tanks State Repository
=======================================

= S T A T E R E P O S I T O R Y

=======================================

--------------------

State UID: 3-3-l

h1: {pos , neg , pos}

h2: {pos , neg , neg}

h12: {pos , neg}

Successor States:

3-3-l, 3-c-l

Predecessor States:

3-c-l, 3-3-l, 3-6-l

--------------------

State UID: 3-9-l

h1: {pos , neg , pos}

h2: {pos , pos , neg}

h12: {pos , neg}

Successor States:

3-9-l, 6-f-f, 3-9-o, 3-6-l

Predecessor States:

3-9-l, 3-8-l

--------------------

State UID: 3-8-l

h1: {pos , neg , pos}

h2: {zer , pos , neg}

h12: {pos , neg}

Successor States:

3-9-l, 3-9-o

Predecessor States:

--------------------

State UID: 3-9-r

h1: {pos , pos , pos}

h2: {pos , pos , neg}

h12: {pos , neg}

Successor States:

6-9-i, 3-9-r

Predecessor States:

6-9-i, 3-9-r, 3-9-o, 6-8-i, 3-8-o, 3-8-r
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--------------------

State UID: 3-8-r

h1: {pos , pos , pos}

h2: {zer , pos , neg}

h12: {pos , neg}

Successor States:

6-9-i, 3-9-r

Predecessor States:

--------------------

State UID: 3-9-o

h1: {pos , zer , pos}

h2: {pos , pos , neg}

h12: {pos , neg}

Successor States:

3-9-r

Predecessor States:

3-9-l, 3-8-l

--------------------

State UID: 3-8-o

h1: {pos , zer , pos}

h2: {zer , pos , neg}

h12: {pos , neg}

Successor States:

3-9-r

Predecessor States:

--------------------

State UID: 3-6-l

h1: {pos , neg , pos}

h2: {pos , zer , neg}

h12: {pos , neg}

Successor States:

3-3-l

Predecessor States:

3-9-l

--------------------

State UID: 9-9-9

h1: {pos , pos , neg}

h2: {pos , pos , neg}
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h12: {pos , pos}

Successor States:

6-9-i, 6-f-f, 9-i-9, 9-9-9

Predecessor States:

6-9-i, 9-i-9, 9-8-9, 9-9-9, 6-8-i, 9-h-9

--------------------

State UID: 9-8-9

h1: {pos , pos , neg}

h2: {zer , pos , neg}

h12: {pos , pos}

Successor States:

9-9-9, 9-i-9, 6-9-i

Predecessor States:

--------------------

State UID: 6-9-i

h1: {pos , pos , zer}

h2: {pos , pos , neg}

h12: {pos , zer}

Successor States:

6-9-i, 3-9-r, 9-9-9, 9-i-9

Predecessor States:

3-9-r, 9-8-9, 6-8-i, 6-9-i, 9-9-9, 9-i-9, 9-h-9, 3-8-r

--------------------

State UID: 6-8-i

h1: {pos , pos , zer}

h2: {zer , pos , neg}

h12: {pos , zer}

Successor States:

6-9-i, 3-9-r, 9-9-9, 9-i-9

Predecessor States:

--------------------

State UID: 3-l-l

h1: {pos , neg , pos}

h2: {pos , neg , pos}

h12: {pos , neg}

Successor States:

3-c-l, 3-l-l, 6-f-f, 6-l-c
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Predecessor States:

3-c-l, 3-l-l, 6-l-c

--------------------

State UID: 9-l-3

h1: {pos , neg , neg}

h2: {pos , neg , pos}

h12: {pos , pos}

Successor States:

9-l-3, 6-l-c

Predecessor States:

6-l-c, 9-l-3, 9-l-6

--------------------

State UID: 7-l-9

h1: {pos , pos , neg}

h2: {pos , neg , pos}

h12: {neg , pos}

Successor States:

7-l-9, 8-l-9

Predecessor States:

7-l-9, 7-l-8

--------------------

State UID: 7-l-8

h1: {zer , pos , neg}

h2: {pos , neg , pos}

h12: {neg , pos}

Successor States:

7-l-9, 8-l-9

Predecessor States:

--------------------

State UID: 9-l-9

h1: {pos , pos , neg}

h2: {pos , neg , pos}

h12: {pos , pos}

Successor States:

9-l-6, 9-o-9, 9-l-9, 6-f-f

Predecessor States:

9-l-9, 8-l-9

--------------------
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State UID: 8-l-9

h1: {pos , pos , neg}

h2: {pos , neg , pos}

h12: {zer , pos}

Successor States:

9-o-9, 9-l-6, 9-l-9

Predecessor States:

7-l-9, 7-l-8

--------------------

State UID: 9-l-6

h1: {pos , zer , neg}

h2: {pos , neg , pos}

h12: {pos , pos}

Successor States:

9-l-3

Predecessor States:

9-l-9, 8-l-9

--------------------

State UID: 9-r-9

h1: {pos , pos , neg}

h2: {pos , pos , pos}

h12: {pos , pos}

Successor States:

9-r-9, 9-i-9

Predecessor States:

9-r-9, 9-o-9, 8-n-8, 9-i-9, 9-h-9, 9-q-9

--------------------

State UID: 9-q-9

h1: {pos , pos , neg}

h2: {zer , pos , pos}

h12: {pos , pos}

Successor States:

9-r-9, 9-i-9

Predecessor States:

--------------------

State UID: 9-o-9

h1: {pos , pos , neg}

h2: {pos , zer , pos}

h12: {pos , pos}
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Successor States:

9-r-9

Predecessor States:

9-l-9, 8-l-9

--------------------

State UID: 8-n-8

h1: {zer , pos , neg}

h2: {zer , zer , pos}

h12: {zer , pos}

Successor States:

9-r-9

Predecessor States:

--------------------

State UID: 6-l-c

h1: {pos , neg , zer}

h2: {pos , neg , pos}

h12: {pos , zer}

Successor States:

9-l-3, 3-l-l, 3-c-l, 6-l-c

Predecessor States:

9-l-3, 3-l-l, 3-c-l, 6-l-c

--------------------

State UID: 3-c-l

h1: {pos , neg , pos}

h2: {pos , neg , zer}

h12: {pos , neg}

Successor States:

3-l-l, 3-c-l, 3-3-l, 6-l-c

Predecessor States:

3-l-l, 3-3-l, 3-c-l, 6-l-c

--------------------

State UID: 9-i-9

h1: {pos , pos , neg}

h2: {pos , pos , zer}

h12: {pos , pos}

Successor States:

9-r-9, 6-9-i, 9-i-9, 9-9-9

Predecessor States:
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9-r-9, 6-8-i, 9-8-9, 6-9-i, 9-9-9, 9-i-9, 9-h-9, 9-q-9

--------------------

State UID: 9-h-9

h1: {pos , pos , neg}

h2: {zer , pos , zer}

h12: {pos , pos}

Successor States:

9-r-9, 6-9-i, 9-i-9, 9-9-9

Predecessor States:

--------------------

State UID: 6-f-f

h1: {pos , zer , zer}

h2: {pos , zer , zer}

h12: {pos , zer}

Successor States:

6-f-f

Predecessor States:

3-9-l, 3-l-l, 9-l-9, 6-f-f, 9-9-9

--------------------------- End of State Repository

Number of states in repository = 28 (71 transitions)
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JMorven Code

D.1 JMorvenThread
The code below shows the implementation of a thread in JMorven, termed a JMorven-
Thread. This provides a mechanism for keeping track of the IDof each thread, the number
of threads queued and running as well as utility methods which allow the current thread
to wait until either a thread is complete, all threads are complete or one queued thread can
be executed.

/*
* JMorvenThread.java

*
* Created on 09 May 2005, 16:01

*/

package JMorven.Utilities;

import java.util.*;

/**
* This is a Thread wrapper which displays debug info for timings/IDs if requested.

* This class should also carry out some housekeeping to have control over the

* number of Threads running at once and also provide a mechanism to wait for

* Threads to become available or finish .

* @author Allan M. Bruce

*/
public class JMorvenThread extends Thread
{

/**
* The number of threads currently running and queued

*/
private static int mNumQueued = 0, mNumRunning = 0;

/**
* The maximum number of threads to spawn at one time

*/
private static int mMaxThreads;

/**
* Flag to determine whether to show timing/IDs of usage

*/
private static boolean mVerbose;

/**
* A counter for the ID of the next spawned thread

*/
private static long mIDs = 0;

/**
* Lock for synchronizing access to shared variables

*/
private static Object mStaticLock = new Object();
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/**
* The ID of the instantiated thread

*/
private long mID;

/**
* Initialise the parameters for the threads - call at start of day before

* using the Class

* @param xiMaxThreads The maximum number of threads to spawn at one time

* @param xiVerbose Flag to determine whether to show timing/IDs of usage

*/
public static void init(int xiMaxThreads, boolean xiVerbose)
{

mVerbose = xiVerbose;
mMaxThreads = xiMaxThreads;

}

/**
* The run method - displays extra info if in debug mode

*/
public void run()
{

synchronized(mStaticLock)
{

mNumRunning++;
}

// if verbose, take note of the time and print a start message
long lStartTime = 0;
if (mVerbose)
{

System.out.println("Thread " + mID + " started");
System.out.flush();
lStartTime = System.currentTimeMillis();

}

// do the work!
super.run();

// if verbose, find out the time taken and print a message
if (mVerbose)
{

long lEndTime = System.currentTimeMillis();
long lTimeTaken = lEndTime - lStartTime;
System.out.println("Thread " + mID + " finished, time taken = "

+ lTimeTaken/1000.0 + "s");
System.out.flush();

}

// decrement the counter and notify all threads
synchronized(mStaticLock)
{

mNumRunning--;
mNumQueued--;
mStaticLock.notifyAll();

}
}

/**
* This waits for threads to start and finish their work.

*/
public static void waitForThreadsToFinish()
{

synchronized(mStaticLock)
{

// wait until we have started if we haven’t already
while (mNumQueued != 0)
{

try
{

mStaticLock.wait();
}
catch (Exception exc)
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{
}

}
}

}

/**
* This waits for a thread to finish

* @return the number of threads still running

*/
public static int waitForAThreadToFinish()
{

synchronized(mStaticLock)
{

if (mNumQueued == 0)
return 0;

try
{

mStaticLock.wait();
}
catch (Exception exc)
{
}
return mNumRunning;

}
}

/**
* This waits until a Thread becomes available - i.e. until the counter drops

* below the number of threads specified in init()

*/
public static void waitUntilThreadBecomesAvailable()
{

synchronized(mStaticLock)
{

while (mNumRunning > mMaxThreads)
{

try
{

mStaticLock.wait();
}
catch (Exception e)
{
}

}
}

}

/**
* Creates a new instance of JMorvenThread

*/
public JMorvenThread(Runnable xiTarget)
{

super(xiTarget);

synchronized(mStaticLock)
{

mID = mIDs++;
mNumQueued++;

}

if (mVerbose)
{

System.out.println("Thread " + mID + " created");
System.out.flush();

}
}

}
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