1

Parallel Fuzzy Qualitative Reasoning

Allan M. Bruce and George M. Coghill
Department of Computing Science
University of Aberdeen
Aberdeen AB24 3UE
e-mail: {abruce, gcoghil@csd.abdn.ac.uk

Abstract

Qualitative Reasoning offers an approach to anal-
yse system behaviours where standard numerical
techniques are impossible or impractical. The the-
ory behind Qualitative Reasoning is very simple,
however current implementations are not very effi-
cient. We have developed a Qualitative Reasoning
engine with a novel parallel abstract architecture.
Recognising several stages within the engine to be
executed in parallel allows the engine to be run on
multiprocessor machines or in distributed comput-
ing environments and is scalable. This should allow
the engine to be executed much faster and make
qualitative reasoning an option for future applica-
tions. Results of the parallelisations show that exe-
cution time has been decreased by an order of two
in these stages when run on a small multi-processor
machine.

Keywords: Qualitative Reasoning, Parallel Sys-
tems, Fuzzy Systems.

Introduction

are sound and JMorven builds on these both by abstracting
the engine and extending the degree of parallelisation.

This paper is organised as follows: Section 2 introduces
qualitative reasoning and Morven [6]. Work undertaken by
Platzner and Rinner to optimise QSIM is detailed in section
3. Section 4 outlines the inspiration for implementing the
qualitative reasoner and how parallelisations were aekiev
Results of the parallelisations are shown and discussesgtin s
tion 5. Section 6 draws some conclusions from the work com-
pleted, and finally some future work is proposed in section 7.

2 Fuzzy Qualitative Reasoning

Mathematical analysis has been used for centuries to thescri
the behaviour of systems. This makes use of precise quan-
tities which need to be well specified, however these precise
gquantities are not always known. Qualitative Reasonin§]5—
(QR) offers an approach to analysing systems with incom-
plete or imprecise knowledge. As such, QR can be used when
gquantitative mathematical techniques cannot. There are se
eral domains in which QR has been used including diagnosis,
learning, planning and control [10-14].

The simplest representation in QR is when quantities fall
into one of three ranges: positive, zero, and negative. 0 in

The development of the GRID [1] and the ongoing evolutionclude extra information about the behaviour of variablesrov
of web services has meant that distributed computing nowime, derivative information can also be included. For exam
has the potential to be carried out on a global scale. Thigle, if a single tank full of water has the plug removed, then
has presented a great opportunity for the construction of Alnitially the volume of water would be qualitatively [+, -],
tools utilising these resources, which is being actively- pu i.e. there would be a positive volume of water but the rate of
sued. Web services offer a portable cross-platform interfa change of volume is negative. Eventually this system would
which allows tools to be easily accessed remotely. equilibriate to [0, O] i.e. there would be no water in the tank
In this paper we present a novel software architecture foand there would be no change in the volume.
Fuzzy Qualitative Reasoning, instantiated as a systemame
JMorven. JMorven is designed to capitalise on these devek-1 QSIM
opments; both by making direct use of the GRID for parallelOne of the most popular qualitative reasoning systems is
processing and providing a web resource for use in larger syQualitative Simulation (QSIM) developed by Kuipers [5].
tems such as model learning, diagnosis or planning. QSIM is a constraint based QR package usipgglitative
The system described in this paper was inspired by th®ifferential Equationgo specify the constraints. Variables in
work of Platzner and Rinner [2—4] on parallelising QSIM [5]. QSIM are represented by<agmag, qdit- pair wheregmag
While developing a C version of QSIM in order to achieve adenotes the qualitative magnitude of the variable which con
more optimal version, they noted that certain parts of QSIMsists of either a landmark value or an interval within theegiv
would benefit from parallelisation, therefore they develdp range. The rate of change of the variable is expressegtliny
a dedicated hardware architecture which resulted in what ig/hich can take one of the three values, for increasingdec
effectively a QSIM machine. While dedicated hardware isfor decreasing ostdfor steady. TheConstraint-filteris used
unlikely to provide a realistic way forward, the design islea to ensure the qualitative states created are consistemtivat



constraints and a pairwise Waltz-filter [15] is used to easur _Operation _ Result Conditions

. ! ] X X - e [

the model is consistent across all constraints which discar " ((1 medn) ) Z: om0
At H ; n d’ ¢’ d(d+e)’ clc—m) ot Y

any tuples.confhctmg acros’s any pqlrof constraints. Tml_l mtn (atebtdr o s allm. n

QSIM to simulate a model’s behaviour over time, transition mn —n» (a—db—c,7+68B8+7) allm, n

rules are used describing how variables transit depending o m xn  (ac,bd, ay +cm — 77,0 +df + (5) m >0 0,m >0 0

(ad,be,dT — ad + 76, —by + cB — B) m <g 0,n >0 0
(be, ad, by — ¢fB + By, —dT + ad — 76) m >0 0,n <o 0
bd,ac,—bd —dB3 — 36, —ay —cTt +717) m <o0,n<p0

their magnitude and direction.

2.2 FuSim m=1[a,b,7,p],n=1cd 9]
QSIM was the main inspiration for the development of
a Fuzzy Qualitative Simulation package called FuSim [8]. Table 1: Arithmetic primitives used in FuSim

Fuzzy reasoning deals with uncertainty whereas QR deals
with imprecision therefore combining the two approaches is . . . . .
thoughtpto increase the scope of suc% a systemPlEuSim repra given time. A behaviour is described as a set of these states

sents fuzzy numbers as paramaterised four-tuples asetbtail ™ @ (ré€ ith each node representing a valid state and each
edge a valid transition.

below.: FuSim, like QSIM, is a non-constructive QR system, i.e.
the algorithm uses the transition rules to determine thefset
0 . rT<a-—a successor values and then filters these with the consteaidts
a”l(r—a+ta) z€la—a d the pair-wise filter.
pa(z)=1< 1 x €la b
Blb+B—x) zelb b+[] 2.3 Morven
0 r>b+ 0

Morven [6], formerly known as Mycroft, is a qualitative rea-
soning framework built on ideas developed in FuSim and
These fuzzy four tuples are used to creBtezzy Quantity adding several novel features. Morven uses a constructive
Spaces A quantity space in FuSim is a set of overlapping approach to qualitative analysis which lends itself bettber
four-tuples which span a finite range as shown in figure 1ward simulation and helps reduce spurious behaviour gener-
An a-cut is used in FuSim to aid simulation - this is where aation. Due to its being constructive, Morven requires that
fuzzy quantity space is converted to a non-overlappingpcris constraints are causally ordered. This is where a constgain
guantity space by selecting a 'typical’ membership vatue, variable must not appear before it has been constraineéin th
ordering.
t One major limit of QSIM and FuSim was the use of only

e o mogre e oM one derivative per variable. Morgan introduced the concept
of Qualitative Vectord16] which inspiredVector Envision-
ment[17] which allows a non-fixed humber of derivatives to
be used, including reasoning purely with the magnitude of a
Figure 1: Fuzzy quantity space showing nine variable. Morven built on this and introduc&aizzy Vector
quantities. Envisionmen{6] which reasons about a non-fixed number of
fuzzy derivatives. With the inclusion of multiple derivags,
ﬁésystem has to incorporate a method to be able to constrain

To use fuzzy four-tuples the standard arithmetic operator L . .
have been defined as shown in table 1. Once these arithmeffa€S€ extra derivativesDifferential Planes[18] are used to
dd these extra constraints. Differential planes also have

operators have been applied to fuzzy numbers, the resultin dvant that th del lexit be reduced f
propagated value needs to be mapped back to a relevant qugf€ 2dvaniage that the modei compiexity may be reduced tor
igher derivatives if the extra detail is not required. Aaex

tity space (the predicted values). TApproximation Princi- . . . .
p% ispuse(g to cfl)o this, which m)erelyﬁsptates that any quantipIe of differential planes is shown below for the single tank

ties in the quantity space overlapping the propagated fuzz§y5tem:

value are an approximation to it. Obviously some values may plane 0: CO:  qo= MH(V)
be more suited to this approximation, sdiatance metrigs CL V'=gi-qo
used to determine how close the approximation is for a given plane 1: Co: g, = M*(V')

propagated value mapped back into the quantity space. ThWhereV is the or -

a5
technique also allows the prioritisation of quantitiesshis  gon the inflow ;/g:jugwuetfgww gft(\a/\:all?etrhrz;?)glc(:ti/%?yf]o repre
utilised during simulation.

FuSim uses a similar variable representation to QSIM
However the derivative is not restrictgd to three valuesas i‘3 Parallel QSIM
QSIM, it can instead take on any value in the quantity spac®©ne disadvantage of Qualitative Reasoning is that cument i
specified (or a specific quantity space purely for that derivaplementations are not very efficient [2] and can take a long
tive if desired). This allows the model to be analysed moretime to analyse the behaviour of complex models. Platzner
precisely over time and also allows FuSim to make temporaind Rinner decided to try and optimise the popular pack-
calculations. Due to the finite number of quantities in eachage QSIM to make it more efficient and therefore appeal to
guantity space, FuSim creates a state to describe the modelawider audience. QSIM was originally developed in LISP



so their first optimisation achieved was when porting QSIMbe obtained to show the benefits of parallelisation on a large
to C. They found that this typically decreased executioretim scale. As mentioned earlier, QSIM has the limitations ofonl
by approximately three to four times for models running onreasoning about one derivative and uses crisp quantities. A
the C version over the LISP version on the same hardwaraew parallel QR engine was designed and implemented to
setup. These results were encouraging so they sought moogercome these limitations.
optimisations.
The Constraint-filter iterates through all tuples from the4 JMorven
constraints and only consistent and valid tuples remaiohEa
constraint is considered in turn and for every possible gemb
nation of values a variable may take, the Tuple-filter check
for consistency with the single constraint. If a combinai®
found to be inconsistent that tuple is discarded, howetbgeif
tuple is found to be consistent then the Tuple-filter does N0l ~ “core system: 1
discard it. The Tuple-filter and a Waltz-filter together make:Pa;iiiﬂﬁ‘:ié;‘l’iﬁ’;i’f;:"" b
up the Constraint-filter. R e
The form-all-states stage takes all valid tuples from the i
1
1
1

JMorven is a Java implementation of a Qualitative Reasoning
Sengine based on Morven and re-written with a novel abstract
parallel architecture (see fig. 3). As with Morven, JMor-

e e ————

" 14| Tuple
Filter

Child process
/ thread

Child process
| thread

i

constraint filter and generates all possible unique states f!

Get mode of

the total set of constraints. | o commandine

Platzner and Rinner decided to use a dedicated hardway 1 = ! s
machine which would execute the large number of instruc; | mdsnive: - | ey |<~:--' Hepadiary
tions more quickly than a standard processor. During the de =———7—— L

1
1
sign and implementation of the tuple filter, they found that: !
the tuples could be filtered independently of each others Thi, !
would mean that all tuples could be constrained in their own
parallel stage which would speed up execution greatly. The Figure 3: The JMorven Parallel Architecture.
Tuple-filter was redesigned for the dedicated parallel hard

m%irgeuprleago[g]n using up to seven DSP co-processors as shovx\//rén uses Qualitative Differential Equations across Déffer

tial Planes to specify models. For example, the followirfg di
ferential equation

Front end Prosessing clement Vi=¢q—q
TMS320C40
- "_‘ - is specified as follows for use with JMorven as follows:
R = Pl_gl‘t — I_fllt Constraint: sub (dt 1 V) (dt 0 gi) (dt 0 gO)
s i e The first keyword after ‘Constraint:’ specifies the type afico
‘ d straint. The subtraction constraint requires three végfato
o omant Goprocessor be specified - the result, the variable to subtract from aed th
TS0 variable to subtract. Variables are specified by (dt DERIV
U VARNAME) where DERIV specifies the order of the deriva-
Coprocessor tive for the variable (zero denotes the magnitude of the vari
X able) and VARNAME specifies which variable is in the con-

straint. All constraints are specified per differentialn@aal-
Figure 2: The Architecture of Parallel QSIM. lowing the detail of higher order derivatives to be reducad f
speed of execution. Since JMorven uses Fuzzy Vector Envi-

sionment (which allows a variable number for the maximum

The form-all-states stage was also parallelised, but usingyer of derivative for a variable), the number of derivesiv
a different technique which partitions the search spac intj, the constraint are not restricted, however every devieat

smaller sub-searches; for more information the reader-is dimust be constrained by the constraints.
JMorven also useBuzzy Quantity Spacde specify the

rected to [2—-4].
The results were positive offering a good performance INfuz2y quantities within the system. The example quantity

crease. As mentioned earlier, the basic C implementatiogn,ce shown in figure 1 would be specified in JMorven as
was approximately three to four times faster than the origitg|ows:
nal LISP version. While using the dedicated hardware par-

allel system, a further speed increase of up to five times was E:F;fgxe '_(1) o '_% s OO o 0(-)115

observed (when using seven processors). These results were n-medium 06 -04 01 01

very good, although there are a few drawbacks with their de- n-small 60'25 (—)0.15 00.1 O0.15
ian: i i i i zero

sign: The implementation was suited only for a dedicated o-small 015 025 015 o1

hardware system using these DSP chips, which limits the user p-medium 0.4 0.6 0.1 0.1

base considerably. Also, the implementation was only deste p-large 075 09 015 005

. - 1 1 0.1 0
on up to seven parallel units therefore a speedup model tanno p-max



Quantities are specified by the following: QNAMEb « 3 [V’ q; q,] = [p-small p-large p-medium

(wherea b o 3 form the paramaterised four-tuple as describeda number of valid tuples will be produced for each constraint
in section 2). JMorven also uses thpproximation Principle  in the model. Since each constraint can be filtered indepen-
dlsc'ussed in section 2 to map calcu!ated quantities from COMYently, they can be executed in their own parallel unit. JMor
straints back into the relevant quantity space. ven creates a new thread for each constraint. If there are mor
o constraints than the maximum number of available threads,
4.1 Parallelisation JMorven queues constraints until a thread becomes awailabl
Taking our motivation from Platzner and Rinner’'s work in A diagram of how théluple Filteris parallelised is shown in
parallelisation, JMorven utilises several parallel sgatgpein-  figure 5.

crease efficiency. The JMorven architecture was writtemfro

scratch and therefore allowed a novel parallel design to be e @ @ s e
easily implemented. The new architecture is abstract and

therefore scalable allowing JMorven to make use of multi-
threaded machines, multiprocessor systems or to run in dis-
tributed computing environments. Being written in Java,
JMorven is also very portable which increases the potential
number of users. The design allows the number of parallel
units to be specified at run-time making optimal use of the
resources available. During the design of JMorven, allehre
stages ofQualitative Analysidhave been identified as paral-
lelisable. These are detailed below. Figure 4 shows a flow  Figure 5: The Tuple Filter in paralleC’,, denotes

diagram of how JMorven is executed for different modes of each constraint in the system which is filtered in
operation. its own thread.

4.3 Pairwise-filter

Par;ﬁe'gP“‘ After the Tuple filterthere are a large set of constraint-tuples,
and each constraint-tuple is a vector of valid fuzzy quanti-

ties similar to the one shown above. To ensure that the tuples

are consistent over all constraints, a pairwise-filter isdus

Get mode of which involves pairing all possible constraint-pairs thae

(o] i . 7 . . .
perafion adjacent (two constraints are said to be adjacent if thely eac
share a common derivative of a variable). Each pairing then
— — iterates through all possible tuples and discards thosatha
Cuattatve | oo f Treneiton not common to both. For example, if we have constraints C1
nalysis Analysis . .
T I and C2 from the single tank example with tuples as shown:

C1: [V’ q; ¢»] =[p-small p-large p-mediupn
C2: [V qo] = [p-medium p-medium
Output Envisionment L . . .
Results where C2 is the one to one mapping representing a monotonic
increasing function betweeW andg,. The only common
] variable to both of these constraintsgiswhich is consistent
Figure 4: Flow Chart of JMorven. for the given valuesg-mediumin both constraints) therefore
the filter would keep this pair, however if C2 p-Jarge p-
large] then the pair would be discarded @swould be incon-
4.2  Tuple-filter sistent across the pair of constraints.

Each pair of constraints can be executed independently of
each other, therefore can be parallelised. One way to imple-
Ment the pairwise-filter is to first create an exhaustivedfst
all possible pairs of constraints for the model, and then cre
ate a new thread for each pair (queuing pairs if the maximum
Shumber of threads has been reached until one becomes free

V' =g —qo as before). JMorven incorporates the Waltz-filter in theeSta
generation stage as explained in the next section.
which states that the rate of change of the volume of water is
equal to the difference between the inflow and outflow. This?-4 State-generator
constraint only reasons about the first derivativé’adnd the  The State-generator is the most computationally expensive
zeroth derivatives of; andg,. A valid tuple from this con- stage ofQualitative Analysis This is the process of iterat-
straint may include: ing through each set of tuples and creating unique states for

The Tuple-filter was parallelised in a similar manner to tifat
Platzner and Rinner where each tuple can be filtered indepe
dently of the others. JMorven iterates through each canstra

in turn obtaining a set of valid tuples from each. For example
from our single tank example above, one of the constraints i



every combination of variables’ derivatives possible. #Mo achieved by followingTransition Rulesvhich assume that
ven combines the pairwise-filter described above withia thi all transitions are continuous. The TA phase has been im-
stage to optimise performance. To create these unigue statglemented in IMorven however no parallelisations have been
JMorven uses a recursive technique to enumerate the coattempted yet. This will form part of future work still to be
straints. All of the tuples within a constraint are cons@ker completed.

in turn. If the pairwise-filter discards the tuple, the nextle

is considered. If there are no more tuples left in the current ) )

constraint the iteration stops and the end of this recurision © Results & Discussion

met allowing the previous constraint’s iteration to congnIf . - . .

and when the pairwise-filter finds a consistent tuple, the nex!© t€st JMorven in a distributed computing environment,

constraint is considered from its first tuple (unless theentr "€ GRID network is intended to be used via the Globus
constraint is the last one). If this is the last constraird an  10Clkit [1]. This allows many machines to communicate in

tuple is consistent then a unique state is created. Thisproc@ Virtual network and share resources allowing an amount of
dure carries on until there are no more tuples left in the firsProcessing power usually only achieved by supercomputers.

constraint. The following pseudo-code shows the process de>© far, JMorven only runs on single machines with one or

scribed above: more processors. JMorven was executed on a ten processor
. SUN server running Solaris 5.8 with Sun Java 1.832 Two
constraint c=0 . test models were used. For testing the Tuple-filter a coupled
function: recurse(int c)
iterate t tuples in constraint c 4 3
{ i1 i2
if tuple t is consistent
{
if cis last constraint l
create uni que state
el se hyy
recurse(c+l) //next constraint h,
To parallelise this stage, the first recursive step is broken . h,
down into an iterative step, and each iteration is spawned in —_—

its own thread (note that all tuples in the first constraimt ar || |
valid since no other constraints have been set, therefere th lqm l““
is no need to check the validity of these tuples). The iterati

is shown below: Figure 7: Coupled tanks model showing two

iterate i through tuples in c=0 tanks of water with heights,, h, and there dif-
{ A ferencehi. Two inflow tapsg;i, ¢;1 and two
recurse(c) outflow plugsg;1, ¢;1 determine the flow in and
b ) . . out of the tanks and the cross-flaw describes
This allows the state-generation to run in parallel as shiown the flow between them.

figure 6. The first constraint is chosen to be the one which

has the number of tuples closest to the number of available

threads. It can be seen that a filter is included in the Statetanks model (see fig. 7) with two inputs and two outputs was
generation which negates the need for a separate Waltz-filteused as shown below (only the first differential plane):
leading to a decrease in execution time.

Constraint: sub (dt 0 h12) (dt 0 h1) (dt 0 h2)
Constraint: func (dt 0 gx) (dt 0 h12)

Constraint: func (dt 0 qo2) (dt 0 h2)

Constraint: func (dt 0 gol) (dt 0 h1)

Constraint: sub (dt 0 g1flow) (dt O gi1) (dt O gx)
Constraint: add (dt 0 g2flow) (dt 0 gi2) (dt 0 gx)
Constraint: sub (dt 1 h1) (dt 0 g1flow) (dt 0 qol)
Constraint: sub (dt 1 h2) (dt 0 g2flow) (dt 0 qo2)

Thesubandaddconstraints are organised by having the result

Figure 6: The State Generator in parall€l;, in the first variable specified. THancconstraint is a qualita-
shows each thread which executes the Recursive tive function where values can be mapped from the left vari-
function R,. able to the right variable which allows many types of funatio

to be implemented. For these models, these merely define the
N _ monotonic increasing functiod{ ™).
4.5 Transition Analysis For testing the State-generator a coupled tanks model was
The Transition Analysis (TA) phase involves determiningalso used, but with only one input (to tank A) and one output
how qualitative states transit between one another. This ifrom tank B) as shown below:



Constraint: func (dt 0 qo) (dt 0 h2)

Constraint: func (dt 0 gx) (dt 0 h12)

Constraint: sub (dt 0 h12) (dt 0 h1) (dt 0 h2)

Constraint: sub (dt 1 h1) (dt O qgi) (dt O gx)

Constraint: sub (dt 1 h2) (dt 0 gx) (dt 0 qo)
The quantity spaces used for both consisted of nine fuzz
intervals as detailed in section 1. Each model was run te
times for each number of threads, and results show the me
speedup achieved.

The results of the Tuple-filter are shown in figure 8. It is

clear to see that there is a benefit from the parallelisations
There was quite a large error in times recorded for the Tuple- 25
filter - this is due to the very small execution time. The Tuple
filter takes well under one second to complete for this model.
Using six threads over one almost decreases the execution
time by a factor of two, which is less than expected. This is o
probably due to the very small amount of time taken for the
Tuple-filter. When the time taken is this small, the overhead
of creating and killing threads becomes apparent. A much
more complex model should show larger benefits from the
parallelisations, and will form part of future work.

from them which will form part of future work to be under-
taken.

Another possibility for the benefits to be less apparent than
expected might be due to the amount of semaphoring required
to protect the data from corruption when accessing it from

ore than one thread simultaneously. For a distributed com-

ting environment, semaphoring would not be required as
all data would be copied for each process, which should al-
low more benefit from the parallelisations.

State Generator and Waltz Filter Speedup
T T T T

Speedup factor, S(n)

Tuple Fiter Speedup
17 T T T

1 2 3 4 5 6 7 8
Number of Processors. n

161

,4
@
T

Figure 9: Execution times of the Waltz-filter and
State-generator. Shows speedup factor of State
Generator and combined Waltz-filter for multiple
processors of threads for a coupled tanks qualita-
tive model with one input and one output.

IS
T

Speedup factor, S(n)
&
T

T 6 Conclusion
Figure 8: Execution times of the Tuple-Filter. JMorven was written in Java to allow it to be portable and run
Shows speedup factor of Tuple-filter for multi- on a wide variety of systems. JMorven has been successfully
ple numbers of processors using a Coup|ed tanks tested on WindowsXP (SPl and SP2), MacOS 10.1, Solaris
qualitative model with two inputs and two out- 5.8 and Fedora Core 2. Due to the abstract parallel architec-
puts. ture, IMorven can make use of the best available resourees, b

it multiple processors or machines in a distributed conmauti
environment.
The State-generator results are shown in figure 9. The ben- . .
g g Parallelisations have been found in all three stag€Xuafl-

efit of the parallelisations is apparent for a smaller nunaber itative Analvsiswhich off d qi E

threads - using four threads over one almost halves the rurt.—a 'Vt? nﬁ y5|ks)w 'Ch c; e(; ? goo spl?ee mt;:rea?e. Xecu-

ning time of the State-generator. This benefit is less otsviou!ON UMe Nas been halved 1or a smail number of processors
the parallel stages for the models tested and greater bene

when using a larger number of threads. This is thought to b hould b f | del din di
due to the model used since the State-Generator splitshe fif't> Should be apparent for more complex models and in dis-
ributed computing environments. The optimal speedup for

constraint into threads. The first constraint chosen mag ha el rem is k i d 191 which
only a few valid tuples when recursed to the next constraint® Paraliél system 1S known as a linéar speedup [19] whic
For example, if there are ten valid tuples in the first coristra states that execution time decreases linearly with the eumb

(CO) then ten threads will be spawned and each thread stargd Parallel units used, or the sequential tishould remain
the recursion in constraint C1. One of these threads migh"fOnStant mdependgnt of th? number of parallel units. JMor-
not have any consistent tuples in C1 therefore would termiY€" does not experience this as not all parallel units haye th
nate after a very short time. However one of the other threadSaMe amount of processing to carry out, however it is clear
may have several valid tuples in the constraint C1 and woul fom the result_s th‘.'"t parallelising is a viable techniquedo
require recursion to the next constraint for each of themethe C'€aS€ execution time.

fore this thread may take substantially longer to execuge. O

timising these parallelisations should allow a better athge sequential time = parallel time * no. of processors



7 Future Work

The Transition Analysistage is thought to be parallelisable,
this will be one area of future work of JIMorven. This will be

complex to implement due to the nature of the data. Transi-
tions require an initial state to be analysed to determiee th[12]
next possible states, and these states require to be pmesent

the envisionmelt This means that there is a lot of shared

memory being accessed at once therefore mutexes will be r¢1 3]
quired to stop data corruption which makes the benefits of

parallelisation less apparent.

JMorven will incorporate an interval simulation engine.
Trying to parallelise this process will form the basis of om
future work.

JMorven was originally intended to be used in a distributed
computing environment therefore implementing JMorven

with the GRID as discussed above will form another area of15)

future work to be completed. Testing with a larger number of

parallel units will provide a better speedup model.

Finally, optimising the parallelisations to achieve clote

linear speedup will be carried out as well as testing more-comy4 7]

plex models.

References

[1] Globus. http://www.globus.org/, 2005.

[2] M. Platzner and B. Rinner. Parallel qualitative simu-

(3]

[4]

(5]

(6]

(7]

(8]

[9]

[10]

2An envisionment is the exhaustive list of states that a model may

lation. Simulation Practice and Theory - International
Journal of the Federation of European Simulation Soci-
eties 5(7-8):623—-638, 1997.

M. Platzner and B. Rinner. Toward embedded qualita-
tive simulation.|EEE Intelligent System45(2):62—-68,
March-April 2000.

M. Platzner and B. Rinner. Design and implementa-
tion of a parallel constraint satisfaction algorithimter-
national Journal in Computers and Their Applications
5(2):106-116, June 1998.

B. Kuipers. Qualitative simulation.Artificial Intelli-
gence 29(3):289-338, September 1986.

G. M. Coghill. Mycroft: A Framework for Constraint-
based Fuzzy Qualitative ReasonifithD thesis, Heriot-
Watt University, September 1996.

K. Forbus. Qualitative process theoutificial Intelli-
gence 24:85-168, December 1984.

Q. Shen and R. Leitch. Fuzzy qualitative simulation.
IEEE Transactions on Systems, Man and Cybernetics
23(4):1038-1061, July-August 1993.

D. S. Weld and J. de KleerReadings in Qualitative
Reasoning about Physical Systemslume 1. Morgan
Kaufmann Publishers, Inc., 1990.

J. de Kleer and B. Williams. Diagnosing multiple faults.
Artificial Intelligence 32(1):91-130, April 1987.

exist in as calculated during tt@ualitative Analysiphase

[14]

[16]

(18]

(19

[11] G. M. Coghill, S. M. Garrett, and R. D. King. Learning

qualitative metabolic models. In R Lopez de Mantaras
and L. Saitta, editor$roceedings of the 16th European
Conference on Artificial Intelligen¢@ages 445-449.

B. Drabble. Excalibur: A program for planning and rea-
soning with processedAtrtificial Intelligence 62(1):1-
40, July 1993.

U. E. Keller. Qualitative Model Reference Adaptive
Control. PhD thesis, Heriott-Watt University, Septem-
ber 1999.

K. de Koning, B. Bredeweg, J. Breuker, and
B. Wielinga. Model-based reasoning about learner be-
haviour. Artificial Intelligence 117:173—-229, March
2000.

D. Waltz. Understanding Line Drawings of Scenes with
ShadowsMcGraw-Hill, New York, 1975.

A. Morgan. Qualitative Behaviour of Dynamic Physical
SystemsPhD thesis, University of Cambridge, 1988.

G. M. Coghill. Vector envisionment of compartmental
systems. Master’s thesis, University of Glasgow, April
1992.

M. Wiegand. Constructive Qualitative Simulation of
Continuous Dynamic SystemBhD thesis, Heriot-Watt
university, May 1991.

R. Greenlaw, H. J. Hoover, and W. L. Ruzz&imits
to Parallel Computation Oxford University Press, Ox-
ford, UK, 1995.



