Contents
1. Introduction
2. Formal Specification

3. Optimisation Methods
3.1 The Simplex Algorithm

4. MATLAB

5. The Design
5.1 TheFirst Draft

5.1.1 Start Point
5.1.2 Create Simplex
5.1.3 Calculation of Each Point
5.1.4 Check for Solution
5.1.5 Sort Points
5.1.6 Reshape Simplex

6. Problems

7. Additional Features
7.1 Exhaustive Search
7.2 Graphical User Interface

8. Test Functions
9. Conclusion
References

Appendix: User’s Manua

1. Introduction

Mathematics has been studied around the globe for thousands of years. Early
mathematics was developed mainly by the Greeks. In 1526, the first mathematical
symbols were used; these being + and - [1] and were soon followed by multiplication,
division and many other symbols used. One of the main problems these
mathematicians faced was due to the lack of computational power available as an
abacusisonly asfast asitsuser. Thisgave great problems when trying to evaluate
large problems such as mathematical optimisation. To overcome this, many methods
of finding the optimal solution to a problem have been researched which require less
computation. Early optimisation would have been carried out on one-dimensional
space, for example, find the optimal solution of x*+5x+1. Thistype of problem can
be solved in many ways but once the variable space is increased into multiple
dimensions then these techniques are often inadequate or require too much
computation. Engineers are faced with problems such as these frequently and methods
to find an ideal solution are still sought after. Such problems may be as simple as
evaluating profit of adesign process, but can extend into complex evaluation of
calculation, for example, as an electronics engineer, it is extremely important to
produce hardware which is fast, reliable and available to the public as soon as
possible. Mathematical optimisation may be used to find the optimal method to
implement an array of logic within amicroprocessor. No matter what the problem is,
atool to find the general solution isrequired.

Thisisareport of the foundations of mathematical optimisation and how a method
was applied in writing a program to evaluate the optimal solution of an unconstrained
two-problem. In the following section, the problem is studied to produce a‘formal
specification’, then in the next section, several methods of evaluating the solution to
such problems are discussed and one is chosen for use in the program. The
mathematical programming language MATLAB is discussed and reasons explaining
the choice of it for the problem are detailed. The design process of the program will
beillustrated along with problems encountered and how these were solved. A
conclusion of the report follows which will aso recommend future work to be studied
inthisarea. Finally aUser Manual isincluded for details on how to use the program
written to obtain a solution for a problemin 2D or less.

2. Formal Specification

Thetask given was vague and before any further design could take place, it was
necessary to produce aformal specification to follow. This alowed the design to be
valid and verified at each stage of the process. The formal specification is shown
below:

“The requirement is to produce a piece of software that will accept a continuous,
unconstrained two-dimensional function and suitable ranges. The software should
then calculate the optimal solution to the problem within these ranges. The optimal
solution will be given by the minimum value within the ranges. One agorithm will
be used to obtain a solution and it will be based on the Simplex Algorithm. To ensure
ease of use, agraphical user interface will be developed to accept the function to be

optimised and suitable range limits. Asamethod of proving the solution, the software
will also provide agraphical output of the function if the user requests. Asan
additional feature, an exhaustive search algorithm should be included to demonstrate
the efficiency and accuracy of the Simplex Algorithm used.”

This specification differs from the task given in that agraphica user interface has
been included to ensure the program is easy to use.

3. Optimisation M ethods

As mentioned previously, several methods for optimisation have been developed. In
the example above, the one-dimensional solution can be obtained using a variety of
algorithms including:
Exhaustive Search
Golden Section Method
Differentiation (Gradient Method)
Simplex
Many others are used but generally not for such asimple problem. It must be noted
that if an optimisation problem is to find maxima rather than minima, then the
negative of the function can be taken and the minima calcul ated: these minimawill
then correspond to the location of the maxima in the original function.
The Exhaustive Search method is the slowest method available from the selection.
However, it always obtains the optimal solution within agiven range. The method is
asfollows:
1. Start at lower range and evauate value to problem
2. Increase variable to be solved by arbitrary amount, delta and solve for it
3. Repeat previous step until the whole range is covered
4. Theoptimal solution is the min/max found in step 2
As can be seen, thisis a very simple method of obtaining the solution but requires a
lot of computation. 1t must also be noted that if the step deltaistoo big, the exact
solution will not be obtained, ideally deltaisinfinitesimally small but this would be
impossible to evaluate.
The Golden Section Method offers an algorithm which will find the solution in far
fewer steps, therefore lesstime. The Golden Section relates to Fibonacci’ s studies.
The Fibonacci sequence is avery basic sequence where the current value is obtained
by summing the previous two values as shown:

Xn — Xn—l + Xn—2
X =1x =1

This results in the following sequence of numbers

1,1,2,3,5,8,13,21,34,55,89...
The golden ratio is defined as the ratio of:

Xn—l

Thisvaueis approximately 1.618033989 but the exact value can be found by

F :\/§2+1

r

Thisratio can be found frequently in nature and in many mathematical problems. The
population of rabbits from generation to generation approximates to the Fibonacci
seguence as does the spiral on a snails shell (If an axis is drawn from the centre
outward, the distance from the centre is approximately the Fibonacci sequence). The
Fibonacci ratio (also known as the golden section) has many interesting properties
such as:

1
2 —
Fr :Fr -|-1 and F_Fr_l
r
The Fibonacci ratio is used in the Golden Section Method agorithm. The algorithm
isasfollows:
1. Evaluate the values of the problem at the range limits
2. Split the range using /F; and 1-1/F; and evaluate the values at these points
3. Select the three lowest values and split the limits using 1/F,
4. Repeat the previous step until the limits are sufficiently close
5. Theoptimal solution is now found
This sounds like an ideal algorithm asit converges rapidly and produces the solution,
but the problem lies in the solution obtained. This method can miss the optimal
solution or get caught in ‘local’ minimaas shown below in figure 1. It can be seen
that the three lowest points do not enclose the true minimum solution, X, and the
algorithm will provide a solution for the local minimum, o. The true minimum was
‘skipped’ by the algorithm.

~Intermediate Limits—

Lower limit Upper Limit

Figure 1: The Golden Section Method ‘skips past thetrue

An improved method of evaluating the minimum solution can be obtained using basic
differential calculus. In this basic one-dimensional problem, the solution can be
obtained by evaluating where:

df

— =0

ax
Thismay result in several points. At each point, the gradient is zero, therefore alocal
minimum/maximum may be obtained. Each point can then be entered into the
original function to evaluate which has the minimum solution. For example, take the
function:

f(X)=x"—x*-x*+x-5

df (x) _ 4x3 —3x? —2x+1
dx
df
d(xX) =0 when 43 —3x? - 2x+1=0

SoX=0.64 0 X=1
f (064) ~ —562 or f (1) == —5
minimum at 0.64 with value of -5.62

This simple process let us obtain the solution quite easily, as long as the roots of the
differentiated function are easily obtained. In the example above, there were 2
minima, and the one that resulted in the lowest solution was chosen. Thisisavery
quick method of obtaining the solution, however in multi-dimensional space it
becomes very complex to obtain the derivative and once obtained, finding where this
equals zero may be impossible. A method of finding a solution rapidly and easily is
required asis the extension into multiple dimensions. An algorithm which satisfies
these requirements is the Simplex Algorithm.

3.1 The Simplex Algorithm

The algorithm used for the program was the downhill simplex or Nelder-Mead
Method. This method follows a small set of basic rules which can be easily
described. A simplex is abasic shape with one more vertex than dimensionsin the
problem, for example, the two-dimensional optimisation program written required the
use of asimplex with three vertices. It iseasy for the brain to think about one, two
and three-dimensional space but beyond causes alot of confusion. Below the simplex
algorithm is detailed as applicable to two dimensions but it can be easily extended
into further dimensions.

1. A starting point is chosen and asimplex created with each vertex close to the
starting point.

2. Thevalue of each vertex is obtained (the sketches that follow will have ared
vertex for the highest value, a green for the lowest and amber for the
intermediate vertex) as shown:

3. Totry and obtain a better solution, the highest value vertex is then reflected
around the midpoint of the line between the two lowest value vertices and the
new value at this point is calculated

4. If the previous step resulted in alower value then it is repeated, however the
point is not just reflected but also extended to obtain a minimum result more
rapidly. The value of this new point is then calcul ated

5. The previous step is repeated until a better point is not obtained. When this
occurs, the highest point is no longer reflected but contracted toward the
midpoint as shown. The new point is then calculated

q—

6. Thislast step is repeated until either unsuccessful, or if the high point gets too
close to the midpoint. Once this happens, all points are scaled toward the low
point and the new points calculated

T

7. Thiswhole processis repeated until the three vertices become sufficiently
close.

This agorithm works well in obtaining a solution. Due to its expanding simplex, it
does not get tricked easily into local minima unless they are quitelarge. The
algorithm also works very quickly as no complex maths are required, just scaling, and
it uses much less cal culations than the exhaustive search.
The disadvantage of such an agorithmisit can get ‘stuck’ in local minimaand some
algorithms can result in a solution in much fewer steps. These problems are
overcome in the ease of application of the simplex. To successfully implement the
algorithm a sufficient programming language was required.

4. MATLAB

It was decided for this program to be written in MATLAB. MATLAB provides
powerful manipulation and ease of use for working with mathematical problems. It
was originally intended for rapid matrix manipulation, for example finding the
inverse, or eigenvalues. MATLAB has been enhanced to include many different
fields of mathematics and since has become avery powerful tool for engineers
worldwide. MATLAB aso allowsrelatively simple implementation of a graphical
user interface, or GUI, which results in programs written being easy to use.

The syntax of MATLAB issimilar to that of the ANSI ¢ programming language but
does not require specific libraries to be included nor such arigorous use of end-of-
command semi-colons. The language will not be discussed in detail here but many
texts are available for understanding and using MATLAB.

For this application, knowledge of several areas was required including how to
declare afunction, how to find the value of the function and how to plot in three
dimensions. Although the problems are only two-dimensional athird dimension
makes the function easier to visualise. The MATLAB Student Edition user’s guide
was consulted for many of the problems met but some were not covered by the text.
Along with MATLAB comes extensive documentation and available online is the
helpdesk. These were used to aid some difficulties. Finally, if the problem could not
be solved, the MATLAB newsgroup (comp.soft-sys.matlab) was used and response
was generaly rapid.
To input afunction to MATLAB as a string, the input command can be used with the
‘s’ switch to make the entered text stored as a string, for example:

ftbm=input(‘ Please input function to be minimsed’,’s');
After this command, the string could be converted to aformat that MATLAB
understands using the inline command with syntax as follows:

f=inline(ftbm);
This creates an inline function for use within the program. To evaluate this function,
the feval command can be used but an easier alternative was found:

value=f(5,7);
Assuming the function given was that of two variables. With these problems solved,
aprogram could begin to take shape.
Aswith any program, the good use of comments are required whilst in devel opment.
This alows for easy debugging and aso allows athird party to understand and follow
the flow of the program.

5. The Design

The first step in the design process was to use the previously mentioned knowledge of
inputting functionsto MATLAB and produce a program that would find the roots of a
one-dimensional problem. This basic program used the bisection method. Some PDL
for thisis shown below where a and b were limits specified by the user:

Check for opposite signs of f(a) and f(b)
while not converged

c=(ath)/2

if [f(c)| < tolerance then converged

else

if f(c) >0 then b=c
elsea=c

evauate f(a) and f(b)

end while

This program checks to make sure that there is an obvious root between the specified
limits before going ahead. It then takes a new value exactly in-between the limits and
checksto seeif it is close enough to the root. If it isnot then the two points that
enclose the root are kept and the program loops until the root is found.

This program could then be modified to converge quicker but it was decided to make
astart on the larger problem.

To alow an easy visualisation of the function to be minimised, it was decided to first
produce a small program that would also benefit testing to seeif the declared
minimum was indeed correct.

The program was as follows:

% This next section is merely plotting out function to check for minimum, will be removed for final copy
x=linspace(xlower,xupper,25); % Make a matrix between x limits with 50 points (all columns equal)
y=linspace(ylower,yupper,25); % Make amatrix between y limits with 50 points (all rows equal)
[X,Y]=meshgrid(x,y); % Make agrid with the pointsin x and y

Z=f(X+eps,Y +eps); % Evaluate the function at each of these points

surf(X,Y,Z); % Draw asurface graph

shading interp % Use interpolation to shade graph

% End of plotting

Thefirst lineis acomment to explain what the section is about. The second line
creates 50 points between the lower and upper x limits specified by user. The sameis
donefor yinthe next line. Thelinethat follows creates a matrix with all values of x
(storing them in columns), and y (storing them in rows)and storesthem in X and Y
respectively. Line five then evaluates the function at each point and stores these
resultsin Z. The graph isdrawn in the next line and finally the graph is shaded using
interpolation. The program ends with another comment to show that thisis the end of
the said section.

This little program displays an approximate graph of the function to be minimised.
Although it issimple, it isusing asimilar method to exhaustive search to obtain all
values of the function. Thisisonly used for avisual aid, hence the step size, and is
not used by the simplex agorithm in any way.

The design was laid out as shown below in figure 2 to ensure every stage ran
smoothly.

Function Minimise ,| Solution
IN Function out

Figure 2: The Simple Overall Design

Thisisavery simple block diagram but every design needs to start somewhere. A
good software design process will split the design into several stages, keeping each
quite ssmple. In the above diagram, the first block had already been completed. A
small piece of code had been produced to get afunction from the user and storeitin a
form usable by MATLAB. The‘Minimise Function’ block is where most of the
design is based, instead of being a black-box it was expanded as shown below in
figure 3:

Select
Start Point

» Create
simplex » Calculate value
of function at
P each vertex
Check tosee [7y
if solution has
been found > Sort pointsin
ascending

order » Reshape
simplex

Figure 3: Black Box of Design Process

The sort was included for the algorithm to work; pointl was always given the worst
value and point3 was aways given the best value. With thisin mind, the algorithm
could then operate without knowledge of each value as the problem had become
generalised. Each box within this process was then to be coded and then verified. A
typical software engineering problem uses validation and verification at each stage of
adesign. Thisalowsfor the formal specification to be adhered to.

5.1 Thefirst draft

With the design specified, and a suitable block diagram of how the design was to
flow, coding begun for each individual step.

5.1.1 Start Point
The start point was chosen to be at the middle of the ranges, so code was as follows:
point1=[(xupper+xlower)/2 (yupper+ylower)/2]; % First point isinitialised in middle of limits
of x and y given
xlower, xupper, ylower and yupper were the range values specified by the user. This
was thought to be an ample starting point and easily calculated.

5.1.2 Create Simplex
To create the simplex, the start point was used and values for point2 and point3 were
obtained relative to the range given by the user. Thiswould allow the smplex to be
appropriately sized for ageneral problem, for exampleif a user specified ranges from
-50 to 50, then the simplex would be given a‘length’ of 1, or if auser specified-1to 1
for the range then the simplex would be given a‘length’ of 0.02. In other words, the
‘length’ of the simplex was taken as 1% of the range specified. Code for thiswas as
shown below:
% Create a ssimplex with 3 points to minimise 2-D unconstrained problem
point1=[(xupper+xlower)/2 (yupper+ylower)/2]; % First point isinitialised in middle of limits
of x and y given
point2=[point1(1)+(xupper-xlower)/100 point1(2)]; % Second point isinitialised in middle of
limits of x and y given + delta(x) evaluated by splitting difference of xlower and
xupper by 100

point3=[point1(1) point1(2)+(yupper-ylower)/100]; % Third point isinitialised in middle of
limits of x and y given + delta(y) evaluated by splitting difference of ylower and
yupper by 100
% End creation of simplex
This shows the code for selecting start point as well as the creation of points based on

this start point.

5.1.3 Calculation of Each Point
The next stage was easy, al that had to be done was to evaluate the value of the

function at each vertex. Thiswas achieved using the following piece of code:
% Evaluate simplex values at points
vauel=f(point1(1),point1(2)); % Evaluate function at pointl
value2=f(point2(1),point2(2)); % Evaluate function at point2
value3=f(point3(1),point3(2)); % Evaluate function at point3
% End evaluate simplex values

5.1.4 Check for Solution

This stage was alittle more complex. How does one know if a solution has been
reached? The gradient may be found, numerically and if the function was ‘flat’
enough then the solution would be met. Thiswould work but had afew problems. If
afunction is generaly flat, then the optimal solution may not be obtained, for
example consider the function

X+
(0= 1

This function would have a solution at the same place if it were not divided by one
million but if the gradient method was used to check for ‘flatness' then it may cease
prematurely and provide the wrong solution. Another disadvantageis that the
simplex may still berelatively large and an accurate solution would not be reached.
Instead, to check for a solution it was decided to check the size of the simplex. To do
this, the following code fragment was produced:
% Are we at minimum?
templ=abs(point1-point2)+abs(point1-point3)+abs(point2-point3); % temp variable to see
how close each point is
temp2=abs(temp1(1))+abs(temp1(2)); % another temp variable to ensure close in x-direction
and y-direction
if temp2<((xupper-xlower)/1led+(yupper-ylower)/1e4)/2 %I f we are a minimum
disp('Minimum found'); ; % then display message
break % Quit from loop
end % otherwise, do nothing
% End minimum check

This checked to see if the simplex was a certain size no matter what the range was.
Thisis due to the accuracy of solutions, all variables used were only accurate to 4
decimal places and as such, if the ssmplex was smaller, then a solution was obtai ned.

5.1.5 Sort Points
As mentioned earlier, the points were sorted to make coding easier. Reshaping the
simplex did not need to check the value of each point if this was donefirst. Due to
there only being three points involved, a basic bubble sort was used with code as
shown below:

% Order points by value (valuel highest down to value3) - using bubble sort

if valuel < value2

temp=point1; pointl=point2; point2=temp;

temp=valuel; valuel=vaue2; value2=temp;
eseif vaue2 < value3

temp=point2; point2=point3; point3=temp;

temp=value2; value2=value3; value3=temp;
elseaif vauel < value2

temp=point1; pointl=point2; point2=temp;

temp=valuel; valuel=vaue2; value2=temp;
end
% End bubble sort

A bubble sort works by checking to seeif adjacent values are ordered, if they are then
it continues, if not it swaps them around before continuing. Thisis carried out until
they are ordered, in this case only three times was necessary.

5.1.6 Reshape Simplex
Thisblock contains the ‘brains' to the program. At this stage, all of the work is done
in obtaining a better solution, given a set of points. As mentioned earlier, the simplex
algorithm works by reflecting or resizing, or both. An enhanced agorithm was
developed to hopefully yield results more rapidly. The changes were:
e |f the highest point is to be reflected, then it will aso be extended no matter if
the previous step was successful in obtaining a better solution
e When resizing the simplex, all points were shrunk toward the midpoint of al
three points. Thisresulted in quicker convergence
With these modifications in mind the following code was used:
% Reshape simplex
midpoint=(point2+point3)/2; % Find the midpoint between point2 and point3
i ntermedi ate=midpoint-point1; newpointl=pointl+2.1*intermediate; % Reflect pointl to
become closer to minimum and extend by 10%
newval uel=f(newpoint1(1),newpointl(2)); % Evaluate value of function at this new point
if newvaluel < vauel % If reflection gives better solution
valuel=newvaluel; % Then use the new point and value
point1l=newpointl;
else
% Otherwise reduce size of Simplex
% Try amethod of finding centre of simplex and then scaling al points toword it.
centre=(point1+point2+point3)/3; % Evaluate co-ords of centre point
intermedi atel=centre-point1; intermediate2=centre-point2; intermediate3=centre-point3; %
Find out the vectors from pointx to centre and name it intermediatex
point1=point1+(1-lambda)* intermediatel; % scale al points toward centre
point1=point2+(1-lambda)* intermediate?; % Using scaing factor lambda
point1=point3+(1-lambda)* intermediate3; % Thisisinitialised at the start of the program
end
% End reshape simplex
The use of lambda here provided quick variation of scaling factor for
experimentation. High values for lambda would result in a slower convergence and
low vaues of lambda would result in more rapid convergence.

6. Problems

This design above was repeated until a minimum was reached, thee range limits
breached or until 500 iterations had completed. Each block was tested to ensure that
it worked asrequired. A problem was encountered with the bubble sort algorithm. It
was not always sorting the points as expected. Thiswas due to the elseif commands
used. Each should be replaced by an end then if command resulting in code:

% Order points by value (valuel highest down to value3) - using bubble sort
if valuel < value2
temp=point1; pointl=point2; point2=temp;
temp=valuel; valuel=vaue2; value2=temp;
end
if value2 < value3
temp=point2; point2=point3; point3=temp;
temp=value2; value2=value3; value3=temp;
end
if valuel < value2
temp=point1; pointl=point2; point2=temp;
temp=valuel; valuel=vaue2; value2=temp;
end
% End bubble sort

This solved the problem so that the bubble sort now worked as intended. The design
had another basic flaw in that, the simplex always started at the centre. If therewas a
local minimum at the centre, then it would fall straight into it without the simplex
increasing the size. The starting point was then given arandom offset to alow the
algorithm more chance of reaching the real solution. Thiswas done by adding the
following code:

randomstart(1)=rand(1)* (xupper-xlower)/7-rand(1)* (xupper-xlower)/5;%Eva uating a

randomstart selection

randomstart(2)=rand(1)* (yupper-ylower)/7-rand(1)* (yupper-ylower)/5;
randomstart was then added to pointl. Since point2 and point3 were located relative
to pointl it was not necessary to add randomstart to them as well.
Another problem with the code was that simplex could easily extend past the limits.
The design was then repeated until the ssmplex went 10% past each limit or until the
other conditions were met. Thiswas done by checking if simplex was within the
extreme limits: xlower* 1.1, xupper* 1.1, ylower* 1.1 and yupper*1.1.
If the range was set so that one was high and the other very low then this failed, for
exampleif xupper was set to 100 and xlower to -1, then the simplex could extend 10
units past the upper limit but only 0.1 past the lower limit. With the 1% length of the
simplex being just over 1 unit; if the simplex approached the lower limit it may go
past it. The extreme limits were then 10% outwith the range given, for example the
lower limit in the x-direction was set as xlower -(xupper-xlower)*0.1. This solved the
problem.
One magjor problem of the original design was when the optimal solution lay at a one
of the boundary limits specified by the user. If thiswas the case then the algorithm
would result in an inaccurate solution. Thiswas particularly noticeablein the

function
F(xy)=x+y

The optimal solution for this functions lies at the corner of xlower and ylower. The
algorithm would reach one limit and stop resulting in wrong results, for example
running the program afew times gave solution at:

(-1,-0.8976) (-0.5647,-1) (-1,-0.9778) and (-1, 0.7399)

with the lower limits both set to -1. It can be seen that on no occasion in this small
sample size did the algorithm give the true result, infact the algorithm was often out
by more than 20% which was unacceptable. To avoid this, a further check was
introduced into the ‘Reshape Simplex’ design. If one of the vertices of the simplex
went beyond the user-specified limits, then its value would become very large set by
valuel=1/(0+eps). The value of epsis defined as, “ The smallest number such that,
when added to one, creates a number greater than one on the computer”[2]. It was

also found that if pointl was not scaled then the algorithm worked even if the solution
lay on aboundary. This provided two minor problems

1. The solution was less accurate for functions with minimawithin limits

2. Thesimplex did not converge nearly as rapidly
To overcome these, a check was made to only stop scaling pointl if the simplex was
at the boundary. Thisresultsin an algorithm which calculates minima accurately at
any placein the function. If the minimum is on the boundary then the algorithm takes
dlightly longer to converge but is still much quicker than an exhaustive search.
A dlight modification was made to the algorithm to increase speed. The check to see
how small the simplex was done using the intermediatel vector calculated when
resizing the smplex. This size-check would then only need to be done if the simplex
was reduced.

7. Additional Features

This resulted in a complete working solution to the optimisation problem but the
design had to continue to include a GUI and an exhaustive search.

7.1 Exhaustive Sear ch

This was done using the following code:
minimum=21/(0+eps); % set the minimum so far to ailmost infinity
x=linspace (xlower,xupper,250); % set the number of pointsin x to search
y=linspace (ylower,yupper,250); % and in y
for i = 1:length(x) % for loop, check every value of x
for j = L:length(y) % for every valueinx, check every valueiny
xcoord=x(i); % set x co-ord
ycoord=y(j); % set y co-ord
value=f(xcoord,ycoord); % Evaluate function at this point
if value<minimum % If thisisthe lowest solution so far
xcoordmin=xcoord; % then set min co-ords
ycoordmin=ycoord,;
minimum=value; % and the value at this point
end
end
end
This very simple code took avery long time to execute as it evaluated the function at
every point, 62500 of them in the case above. This method did not give an accurate

solution either, for example for the function:

f (X) =sin(x) + cos(y)
the exhaustive search would report minimum solution of -1.9999 but the simplex
would report aminimum of -2. Other functions made the exhaustive search even
worse. The enhanced ssmplex used in the main design yielded a much more accurate
solution and in much lesstime. Typicaly, the exhaustive search took over 30 seconds
and the enhanced simplex took less than a quarter of a second. These values were
recorded using the commands tic and toc, which display the elapsed time between the
two commands.

7.2 Graphical User Interface

To enhance this program and make it very easy to use a graphical user interface was
included. Thisinterface was decided to have an areato enter the function and range
limits, a set of axes for displaying the approximate graphical output and buttons to
choose which method of plotting, and two main buttons for optimising with both
algorithms. MATLAB contains a suite of tools for designing the interface, which
were easy to use after reading through the example GUI. The picture below in figure
4 showsthe final GUI in action.

<) | 2-D Mathematical Optimisation

Please enter function below using » and y as vanables Find mirimum using
Please ensure to use corect maths symbols for scalar

operation (If in doubt, corsult the wsers manual] Exhaustive Search
- [0 bt

miniraum at: (-1.5582 -3.1325)= -1.9559

Please enter the range it
to mirimise ool e
- ' e Create Mesh

Hemin -4 : % 3 :
Hemax 4 J%«LJ Create Surf

i
-min -4 e -‘q ! ‘ :_‘:L' i Contour plot
Y-max 4 i i

14 Stant T &G | ¥ Inbo- Outlook Express | @ op b, | o3 Documert ... i &;)!! 01,05

Figure4: Graphical User Interface

Details are not given on the design of the GUI as this step was not required, but some
basic knowledge is briefly discussed. To create the GUI, the ‘guide’ command was
used. Guideisan acronym for Graphical User Interface Development. This
command gave alayout designer and push buttons, axes and editable text was laid out
as shown in figure 4. Each of these was given atag and an m-file was produced. In
the m-file, each tag had a separate function and details of this function were entered in
the appropriate section. It was noted that variables must be declared as global for
every function requiring them unless the ‘ handles structure’ was used, in which case,
the structure had to be saved after every modification using the guidata command.
With these requirements in mind the GUI was programmed easily. The graphical
output display was aso modified to detail the minimum found with a cross and circle.

8. Test Functions

During the design, the algorithm was tested to ensure operation was as expected.
Some functions have been detailed in the design process above and how they were
calculated correctly or wrongly. Below, figure 5 shows the results from the final
program to show its effectiveness of displaying the correct results.

Function to be
minimised

Range set

(xmin, xmax, ymin, ymax)

Minimum at:

Contour plot

f(xy) = =x*)+(y" - y?)

(-11,11,-1.1,1.2)

(0.70711,0.70711,-5)

f(x,y) =sin(x) + cos(y)

(-32,32,-32,32)

(-1.5708, -3.1416, -2)

f(x,y):isinéR) R=x*+y*

(-10, 10, -10, 10)

(1.8964, -4.0736, -
0.21723)

f(x,y)=R*-R?
R=4/x*+Yy?

(-1,1,-1,1)

(0.11011, 0.69848, -
0.25)

f(x,y) = logx~logy

(0.1, 10, 0.1, 10)

(0.1, 10, -4.0652)

Figure5: Example Resultsfrom Final Program

Many other functions have been tested and worked, thisisjust afew. The algorithm
also works with imaginary numbers, so this does not restrict the user to ‘real’
functions. Overal, the algorithm provides the correct solution for avery broad range
of functions and ranges. As mentioned earlier, it also produces these results very
quickly indeed, and as such would be useful as atool for many two-dimensional

optimisation problems.

9. Conclusion

At the start of the design, it was thought that it was going to be a difficult process.
Thiswas the first piece of major software written by the author. After much thought,
it was decided to implement the simplex algorithm. The design became much easier
after it had been broken down into several stages. Figures 2 and 3 show this process.
Once each stage had been recognised the design of each stage went fluently and
problems could easily be recognised. The agorithm had some flawsin that it was not
producing the correct result if the optimal solution was at the boundary of limits
specified. Thiswas overcome by adapting the algorithm for boundary conditions.
The speed of the algorithm was also increased by scaling at all stages and when
scaling down, al points were scaled toward a centre point unless at a boundary.
Overall, this produced a 20-25% increase in speed.

There is room for improvement in this program. Some speed increase could be
obtained by evaluating some variables only once, as several are being calculated in
different stages of the design. This may increase the overall speed of the algorithm
but it is thought that it will not be by much. The program set out to find the optimal
solution to atwo-dimensional function. This could easily be extended into three-
dimensions and beyond.

References

[1] Jeff Miller, http://members.aol.com/jeff570/operation.html, Dec 2001
[2] “The Student Edition of MATLAB Version 5 User’s Guide”, D. Hanselman and
B. Littlefield, Prentice Hall 1997

Appendix: User’s M anual

This program has been designed to find the minimum solution to a continuous,
unconstrained, two-dimensional optimisation problem. It takes input from the user
for the function and the range to search over. The user can then chose to find the
solution to their problem using the ‘ Enhanced Simplex’ algorithm or an exhaustive
search method. The user may also specify an approximate graphical output of their
function and can print thisout. If the user wishes to find the maximum solution, then
the entered function should be the negative of the original. Thiswill result in the
optimal solution being located.

There are four files to this program; all should be stored in the current MATLAB
path, for example c:\MATLAB\work. Thiswill ensure the program runs correctly.
Thefour files are:

e Opt2dui.fig

e opt2dui.m

e sSimplex2.m

e exhaustivem
To run the program simply type ‘opt2dui’ at the MATLAB prompt, thiswill display
the graphical user interface as shown below:

=} 2-D Mathematical O ptimisation g@g|

File

Pleaze enter function below using & and y as vanables Find minimumm using:
Fleaze enzure to uze corect maths symbals for zcalar

operation [If in doubt, conzsult the ugers manual] Exhaustive Search
o [55 3 st

Pleaze enter the range Tr
ok
° miimise Create Mesh
. 0ary
F-min 1.1
NG} Create Suf
0.4t
02 \
] X
\ \
Input Area Display Area Selection Area

Theinterfaceis split into 3 main areas:
Theinput area on the left
The selection area on the right
The display areain the centre.

The input area has 5 boxes for input about the function to be minimised. At the top.
The function can be entered at the box starting with *f(x,y)=". To enter the function
simply click in the white area (there is a default function * (x.*4-x."2)+(y. -y . 2)’
already there. Use <backspace> or <delete> to clear the function box and input your
function. Functions must follow a certain format as discussed below. Thisisthe
format specified by MATLAB, so if you already know how to do this, you may skip
this step.

I nputting a Function
All scalar multiplication/division (multiplying or dividing by afixed number, e.g. 2)
must be entered with * or / for multiplication and division respectively.

eg. 4*x ory/3
All division and subtraction should be entered using + or — whether it is scalar or
variable addition/subtraction

eg. x+5 or y-2+3
If variables are to be multiplied or divided, then use the operators .* or ./

eg. x*y ory./x
If exponents are to be used for variables then the .~ operator should be used, if scalar
exponents are required then just use

eg. x"3 or 5"2
Trigonometric functions need to be entered as normal but multiplication or division of
these follow the rules of variables as shown

e.g. sin(x).*cos(y)
I trigonometric functions are to be scaled then it may be done as follows

e.g. 3*cos(y) or (sin(x.*y))/4
To evaluate the square root of afunction, this should be entered

e.g. sgrt(x) or sgrt(x. 2+y."2)
The default function at startup should help clarify some of these matters.

Setting the Range

Again, adefault range has been set here. The range values have been labelled as xmin
for the minimum value of x to search, xmax for the maximum value of x to search and
similarly for y. To change the range, simply click on the corresponding limit you
want to change. Using the <backspace> or <delete> keys, clear the existing range and
enter anumeric value for your range. Please note that this must be numeric and an
error message isdisplayed if itisnot. If pi isrequired, then it is suggested to use
3.1416.

Finding the minimum

The selection area on the right hand side has been split into main areas. The bottom
contains methods of graphically displaying your approximate function and the top
contains two buttons to find the solution to your problem.

It isrecommended just to use the ‘Enhanced Simplex’ button shaded in dark grey.
Thiswill give avery accurate result very quickly. Once you have entered your
function and set your range, ssmply click on this button and the minimum will be
displayed at the top of the display area. The minimum displayed gives the location of
the minimum and the value at the minimum.

Graphical Output

This feature provides an approximate visual display of the function entered and the
minimum is displayed by a ®. To view agraphical output, simply click on either of
the buttons marked ‘ Create Mesh', ‘ Create Surf’, or ‘ Create Contour’ once avalid
function has been entered. The Mesh display shows a 3-D graph with several points
and each adjacent point is connected by a straight line. The Surf display showsa3-D
interpolated graph. This makes the graph appear smooth and is a better
approximation to the function. If the Contour is selected, this provides a 2-D top
down view of the graph, with the value of the function shown by coloured contours.
Red contours show high values for the function, whereas dark blue contours show low
values of the function.

Printing Display

The graph may be printed by clicking on the File Menu at the top right and then on
display. Thisrequires aprinter to be specified in MATLAB which is not covered in
this manual. Please consult the MATLAB User’s Guide.

		2002-08-06T21:30:37+0000
	Allan M Bruce

