
INTRODUCTION 
Protocols are strict languages used for 
communicating reliably between two 
compatible nodes.  Each node must 
know how to interpret and send signals 
in accordance with the rules of a 
particular protocol.  Some protocols 
are very simple but do not offer robust, 
reliable communication.  For a 
protocol to be reliable it must send data 
with no loss or duplication.  Data must 
also be delivered in the correct order 
and within a reasonable timescale [1]. 
The English language is an example of 
a type of protocol, used to 
communicate between people who 
understand the language.  In most 
circumstances, the language is highly 
effective, however breakdowns do 
occur - albeit infrequently.  A protocol 
should not contain any ambiguities and 
as such they are becoming increasingly 
complex. 
One of the first practical applications 
of protocols was merely for sending 
documents reliably to a printer via a 
cable.  This used a basic error checking 
system known as parity.  Parity is 
successful in detecting errors with a bit 

error rate of 0.125 (1 in 8) or less, it is 
said that parity has a Hamming 
distance of 2.  This is effective in 
theory but in practice errors do not 
generally occur a single bit at a time.  
Losses of signal quality mean most 
errors usually occur in bursts.  Parity 
then only has a 50% success rate [2] in 
detecting such errors.  Protocols were 
then developed for communication 
between computers.  One of the most 
basic protocols is the Aloha Protocol.  
Aloha is the Hawaiian translation for 
hello.  With this simple protocol, 
computers are involved in half duplex 
transmission (half duplex is the term 
for communications that occur in both 
directions but not at the same time).  
When data need to be sent, the sending 
computer sends the data without 
establishing whether the other 
computers are ready.  Problems are 
encountered when two computers wish 
to transmit data at the same time as 
shown in figure 1. 
 
To allow a more reliable method of 
transfer, each segment of data contains 
a Cyclic Redundancy Check.  This is a 

A 
B

time 

Figure 1: Collision in the Basic Aloha Protocol 



method of testing data using very 
simple logic to detect errors.  
Typically, a CRC algorithm can detect 
over 99.99% of errors [3].  In the 
Aloha Protocol, once an error has 
occurred due to a collision, 
retransmission is necessary.  To stop 
both nodes immediately retransmitting 
and causing further collisions, a set of 
two numbers is created and one of 
these numbers is chosen at random.  
This number depicts the delay before 

retransmission as shown above in 
figure 2. 
 
Due to the random retransmission, 
both computers may then again send at 
the same time.  If this occurs, then the 
set of numbers is doubled and a 
number chosen at random from this 
new set.  This process is known as 
Exponential Back-off and is illustrated 
in figure 3 below. 
 

A 
B 

Figure 3: Exponential Back-off in the Basic Aloha Protocol 

time 

Retransmit 
{0,1} Retransmit 

{0,1}
Retransmit 
{0,1} 

After the initial collision 
‘B’ chooses ‘1’ from a set 
of 2 numbers.  Another 
collision occurs and ‘B’ 
chooses ‘2’ from a set of 4 
numbers.  Another 
collision occurs, now ‘B’ 
has to choose from a set 
of 8 numbers 

Retransmit 
{0,1,2,3}

A 
B

Figure 2: Retransmission in the Basic Aloha Protocol 

time 

Retransmit 
{0,1} Retransmit 

{0,1}

‘A’ picks ‘0’ at 
random, therefore 
delay of 0 before 
retransmission. 
 
‘B’ picks ‘1’ at 
random. Therefore 
delay of t before



This creates a big problem for ‘B’ as if 
A’ has lots of data to send since, if the 
medium is used by other computers, 
then further collisions will occur.  ‘B’ 
has to choose from larger number sets 
resulting in transmissions from ‘B’ 
being delayed.  In this case, a more 
advanced protocol is required. 
 
STANDARD DESIGN OF 

PROTOCOLS 
Modern protocols have been designed 
through experience and correction of 
known problems in previous protocols; 
in fact the process has been described 
as “design by correction” rather than 
“correct by design” [4].  Internet 
protocols are studied by the Internet 
Engineering Task Force, IETF.  The 
IETF have meetings quarterly and 
proposals in the form of Request for 
Comments (RFCs) are discussed.  
There are three main types of RFC.  
The first, an Internet Draft, is a 
proposal for a new standard or 
modification to an existing one [5].  
There are Informational and 
Experimental RFCs which outline a 
particular area already standardised or 
an area undergoing research.  If this 
document is approved, then an official 
RFC is published.  One of the most 
important RFCs published to date is 
the “Requirements for Internet Hosts -- 
Communication Layers” [6].  This 
defines the standards for protocols at 

layers 2, 3 and 4. 
 
 

TCP PROTOCOL 
One of the most used protocols for 
reliable communication in modern 
computing is the Transmission Control 
Protocol or TCP.  TCP is part of the 
OSI Reference model, which is an 
official standard that allows computers 
to communicate using a number of 
protocols that have been split into 
seven layers.  Each layer provides a 
different service for communication.  
One of the most studied layers is the 
fourth, known as the transport layer.  
This: 
“provides transparent transfer of data 
between systems, relieving upper 
layers from concern with providing 
reliable and cost effective data transfer; 
provides end-to-end control and 
information interchange with quality of 
service needed by the application 
program; first true end-to-end layer.” 
[7] 
TCP is implemented at this layer. 
TCP is a connection-oriented protocol 
[8] meaning that the two computers 
communicating must first establish a 
connection.  This will be discussed in 
more detail later. 
 

TCP HEADER 
To allow protocols to be uniquely 
identified, they require a section before 

Figure 4: TCP Header [8] 

16-bit source port 16-bit destination port 
32-bit sequence number 

32-bit acknowledgement number 
4-bit header 

length 
6-bits reserved Flags 16-bit window size 

16-bit TCP checksum 16-bit urgent pointer 
Options (if any) 

Data (if any) 
 

20 
bytes



the data known as a header.  In this 
header, protocols also provide 
information about the subsequent data.  
A typical TCP segment has a header as 
detailed in figure 4 below.  
 
Each section of the header is briefly 
discussed below: 

• 16-bit source port number.  
This is the IP address of the 
sending computer (note, this is 
in conformance to the IPv4 
standard.  IPv6 requires a 32-
bit IP address) 

• 16-bit destination port 
number.  This is the IP address 
of the intended recipient (again 
this is in conformance to IPv4, 
IPv6 requires 32-bits) 

• 32-bit sequence number.  This 
is a number, which is 
incremented by the number of 
data bytes sent.  This ensures 
that all data is received in order 
and without duplication. 

• 32-bit acknowledgement 
number.  This contains the 
number of the next expected 
sequence number to be 
received from the other client 
in communication. 

• 4-bit header length.  This is 
total length of the TCP header 
in 32-bit words.  This allows 
the use of options, but is 
usually set to 5 (20 Bytes). 

• Flags.  6 bits indicating type of 
segment.  These are discussed 
in more detail below. 

• 16-bit window size.  This 
informs the other client how 
much data can be received in 
the next segment.  This 
decreases if data is not 
processed and remains in a 
buffer.  One of the most 
commonly used options is 
window scaling, which allows 
much larger window sizes to be 
advertised.  Typically, a 

modern operating system has a 
default of 16 or 32 Kbytes for 
its maximum window size. 

• 16-bit TCP checksum.  This is 
an error detection field that 
must be calculated and set for 
every segment.  This is used for 
checking any errors in both the 
header and the data. 

 
TCP FLAGS 

The flags are used for defining the type 
of segment to be transferred.  Types of 
segment are used either for 
establishing or terminating 
connections, or, sending or 
acknowledging data.  As mentioned 
earlier, TCP requires connections to be 
set up.  To do this the inclusion of a 
SYN flag has been implemented.  This 
allows two computers to synchronise 
to each others sequence numbers.  The 
ACK flag acknowledges receipt of data 
and allows a connection to be 
established.  This must be done in both 
directions to establish a link. 
Data can be sent using the PSH flag, 
although this is not required.  The 
correct use of the PSH flag is for 
passing data to the OS as soon as 
possible, but most implementations of 
TCP use this for all data.  Again, an 
ACK flag is used for acknowledging 
receipt of data.  If data is received 
corrupted or out of order then another 
ACK is sent, not acknowledging this 
data but as a label for warning. “the 
data was not reliable, please resend”.  
An URG flag is used for urgent data, 
the operating system then looks at the 
urgent pointer and adds this to the 
sequence number to obtain the last 
byte of data that is flagged as urgent. 
Once the connection is established and 
all data has been transferred, it is 
required to close the connection to free 
resources.  This can be done in two 
ways.  The standard way is to issue a 
FIN flag, which requests the 
connection to be closed.  On receipt of 



an ACK, the connection is closed.  As 
with the connection-establishment, the 
termination must be done in both 
directions to completely close the 
connection.  An abnormal method of 
terminating a connection is to send an 
RST flag.  This causes a reset, and 
does not require both directions to 
close.  This was implemented in the 
case of computer crashes but is 
misused by the new HTTP/1.1 protocol 
[9]. 
 

TCP TIMERS 
In order for the protocol to be reliable, 
it must also deliver the data in a 
reasonable timescale.  TCP includes 
three timers to ensure this occurs.  
These are the retransmission, persist, 
and keepalive timers. 
The retransmission timer is used as a 
basic time-out counter.  If no 
acknowledgement of data is received 
within this counter then data is 
retransmitted as it may be undelivered.  
Usually, the first timeout is set to 1.5 
seconds [8], and then uses exponential 
back-off until 64 seconds is the delay 
between retransmissions.  The default 
number of retransmissions is usually 
set to 12 before the connection is reset.  
To avoid data loss through network 
congestion, the protocol initiates a 
slow-start phase which gradually 
increases throughput until an optimal 
value is achieved. 
The persist timer is used to find out the 
window size of another client.  
Suppose computer A wishes to send 
data to B, but B advertises a window 
size of 0, indicating its buffer is full 
and cannot receive any more data 
temporarily.  A continues to send 
segments with no data to B to establish 
when it is ready to receive more data 
again.  A persists in trying to send data 
to B. 
Finally, a keepalive timer is used for 
connection that remain open for long 
times.  If a connection remains open 

and idle for a period, usually two 
hours, then a keepalive probe is sent.  
There are four possible outcomes from 
this scenario, either the computer is 
still there, is unreachable, has crashed, 
or has crashed and rebooted.  The 
protocol takes necessary actions as to 
what to do in each case. 
 

PROBLEMS WITH TCP 
The design of the TCP protocol was 
not achieved overnight, it has had 
many revisions since its original 
specification [10].  These revisions 
have been ‘designed’ by the RFC 
updates through the IETF.  Until 
recently, this was the preferred method 
of protocol design; getting a group of 
experts in the field and formulating a 
design with their combined knowledge 
and past experience.  It has been stated 
that if 5% of the protocol is used 95% 
of the time then concentrate on this 
part of the design.  Some engineers 
think that if the protocol crashes and a 
re-connection is required, this is fine.  
What if the computer requires a reboot 
due to the protocol failing? Or in a 
more extreme circumstance, what if a 
server needs rebooting?  Where is the 
line drawn as to what is a reasonable 
failure within a protocol?  Different 
applications require a varying amount 
of reliability.  The complex nature of 
the TCP protocol leads to design 
problems.  It is not possible to test 
every set of data, every flag, every 
time-out so how does one verify the 
design? 

 
FORMAL 

SPECIFICATION 
When an engineer is initially presented 
with a design, there are often many 
problems in the interpretation of the 
requirements.  Usually, a formal 
specification will be proposed before 
the design commences.  This document 
will dispose of all platitudes, 



ambiguities, inconsistencies and 
omissions [11].  Platitudes are vague 
statements where no real information 
can be deduced.  Ambiguities occur 
when statements have multiple 
meanings and it is unclear as to which 
is intended.  Inconsistencies are 
contradictory statements which cannot 
be met due to other requirements.  
With a formal specification 
constructed, it is possible for the 
design to commence and checked to 
ensure the requirements are met. 
 

VALIDATION AND 
VERIFICATION 

Validation and Verification is the 
process of comparing a design to the 
formal specification.  This is carried 
out at regular stages of the design to 
ensure problems are not encountered.  
Verification is often thought of as, 
“Are we building the system right?” in 
conformance with the formal 
specification.  This stage is often 
completed using module and 
integration testing, allowing the design 
to generally follow the requirements.  
Suppose all modules are tested 
individually and they work as 
intended, they are then tested when 
integrated together to ensure correct 
operation is still achieved.  Validation 
is often referred to by, “Are we 
building the right system?”  This is 
often carried out by using acceptance 
tests, usually a mathematical means of 
testing areas of design.  This may be 
by exhaustive methods if the size of 
design allows it, but generally this is 
not the case. 
It is this process of validation and 
verification throughout the design that 
produces a working design.  Methods 
of incorporating this and analysing 
each stage with formal verification can 
be used to prove a design is exactly as 
specified in the formal specification.  
The design would then be 100% 
correct at each stage of the process, 

and would lead to a completed design 
being provably correct, hence correct-
by-construction. 
 

CORRECT-BY-
CONSTRUCTION 

Correct-by-construction is the term 
given to a design which is provably 
correct by using certain methods 
during the whole of the design process. 
Formal methods of verification are 
used at every possible step to ensure 
the formal specification of the design 
is adhered to.  There are many 
different techniques of formal 
verification available for use.  Such 
methods use exhaustive approaches, 
highly mathematical techniques or 
complex software and logic depending 
on the type of design in question.  
Formal methods have been used for 
many years in different fields of 
engineering.  Digital Very Large Scale 
Integration, VLSI, has been using these 
techniques for over 10 years and one 
major CAD company [12] in the field 
has implemented this into their latest 
release of software.  Techniques for 
specification allowing easier 
verification use formal ordinary 
mathematics and temporal logic.  
Temporal Logic of Actions, TLA [14], 
was developed as a variation of these 
techniques to enhance the design 
stages.  These techniques have recently 
been used in many software designs to 
achieve better results.  There are also 
some languages which assemble 
designs on previously proven 
algorithms [13].  The most used 
method however is temporal logic 
verification which is extremely 
thorough in its verification.  Some 
designers think this process offers too 
robust a design, which does not make 
efficient use of resources.  In the 
application of internet protocols, this is 
undesirable.  The internet is slow and 
utilisation of communication media 
should be maximised, however, in a 



safety-critical application this may not 
be the case.  Such a safety-critical 
system may be a fly-by-wire system 
used in military aircraft.  This system 
is used to estimate what a pilot desires 
when turning his flight control left.  
The system has been very successful 
and is soon to be introduced into the 
automobile market.  Fly-by-wire and 
other safety-critical systems often have 
large bandwidths in comparison to the 
amount of utilisation they require and 
with memory and processing power 
being extremely cheap, mean that there 
is an application for correct-by-
construction protocols.  It is also just a 
matter of time until a high-level 
language is developed for 
implementation of such protocols; one 
upcoming validation language for 
protocols is PROMELA [15].  When 
good tools are available, it will be 
possible to produce more efficient 
protocols that are correct-by-
construction, but there are additional 
problems with this method of design. 
One of the major disadvantages of 
correct-by-construction design is cost.  
Formal methods of validation and 
verification are very laborious and 
occupy a large percentage of the 
design timescale.  Correct-by-
construction requires these formal 
methods to be applied at frequent 
stages throughout the design process.  
This equates to a very high 
consumption of resources in the 
design.  To combat this disadvantage, 
one area of engineering that is easily 
validated using formal methods is the 
design of finite state machines.  
Protocols, even complex ones, can be 
thought of as a finite state machine, 
FSM.  This type of design requires a 
much more in-depth formal 
specification but once this document is 
complete, the design should be 
straightforward and validation easily 
applied.   

Correct-by-construction, however, 
does have one major flaw that may 
never be eliminated.  This problem lies 
in the proof of a design being validated 
100% at any stage.  If this validation 
process uses any software (which is 
probable as a degree of automation is 
required for sufficiently large designs) 
then the software may contain bugs.  
There has been an instance [16] when a 
research company had produced high-
level protocol development software.  
This software was designed using 
correct-by-construction techniques to 
prove that it would be provably 
correct.  When designing a protocol 
with this software, the protocol was 
found to have errors and did not work.  
In this case, it was found that the C 
compiler being used contained bugs. 
From this, it can be seen that there are 
many other aspects to take into 
consideration when declaring some 
design ‘provably correct’.  What if the 
C compiler in the above example was 
designed using correct-by-construction 
techniques and did not contain any 
bugs?  The processor may then contain 
bugs, but can the processor use this 
design process?  Processor design is 
carried out using synthesis software 
which accepts a high-level language 
such as VHDL or Verilog as a 
specification.  A compiler will then 
produce the layout for transistors to be 
embedded into silicon.  As mentioned 
above, one major company in this field 
now supports correct-by-construction 
techniques in their software.  This 
could be used to produce a processor 
that is provably correct, and along with 
a software compiler which uses these 
techniques, surely a design could then 
be manufactured that is provably 
correct and hold?  There is scepticism 
about this, as for the design to be 
provably correct, it must be correctly 
specified in the formal specification.  
Unfortunately, this is not an easy task, 
an example of an existing protocol 



which suffers from this is the 
Internetworking Protocol, IP.  If a 
packet arrives at a router with the 
‘don’t fragment’ (DF) flag enabled 
then …. 
As mentioned earlier, finite state 
machines require an in-depth formal 
specification but it is easy to check for 
completeness, this is not the case for 
designs that cannot be specified as an 
FSM.  With this problem, many 
engineers feel that a provably correct 
design may never be exactly 100%, but 
is it not good to get better designs? 
 

CONCLUSION 
Existing protocol designs have been 
found to contain many problems which 
cause connections or, more seriously, 
computers to crash.  This is a problem 
in the application of safety-critical 
systems where a protocol is required 
that will not crash, even under extreme 
conditions.  It would also be desirable 
to many engineers to have a protocol 
free from errors. 
Correct-by-construction is a method of 
design based upon formal methods of 
verification and validation of a formal 
specification document, constructed 
thoroughly before design commences.  
This method is thought to provide a 
design which is provably correct and 
would be ideal to apply this technique 
in the design of protocols. 
Drawbacks in this process include the 
amount of time and therefore cost 
during the validation stages which are 
carried out at regular intervals during 
the design.  A degree of automation 
can be used in the form of software 
systems but these may contain bugs 
unless similar techniques are used in 
their production.  This gives a trade-off 
which can be chosen appropriately to 
the design in question.  Further 
disadvantages include a design which 
is too robust and as a result does not 
have good utilisation for a given 
communications media. 

For internet applications, it is desirable 
to have a protocol that is freely 
available and uses the media optimally.  
In this application, it would not be 
desirable to use correct-by-
construction techniques.  In safety-
critical applications however, the 
media does not have to huge 
utilisation.  This is due to the low cost 
of high throughput media and very low 
cost of memory and processor power 
available today.  In this case, correct-
by-construction techniques would be 
much more useful to reduce risk. 
The specification of a design is an area 
which provides difficulty.  Finite state 
machines are easy to specify although 
lengthy, and as such are easily 
validated.  Protocols can be designed 
as large, complex finite state machines, 
therefore using correct-by-construction 
may be a valid design method. 



REFERENCES 
 
[1] Godred Fairhurst, 

http://www.erg.abdn.ac.uk/users/gor
ry/eg3561/arq-
pages/reliability.html, Lecture 
Notes, Retrieved Nov 2001 

 
[2] “Parallel Cyclic Redundancy 

Check (CRC) For HotlinkTM”, 
Cypress Semiconductors 
Corporation, March 1999 

 
[3] Anand R, Ramchandran K, 

Kozintsev IV (Sep 2001), 
“Continuous error detection (CED) 
for reliable communication”, IEEE 
Transactions on Communications, 
49 (9): 1540-1549 

 
[4] Vinod Dham, “CAD Tools: Wish 

List of An IC Designer”, VP 
Broadcom Corp. 

 
[5] S. Bradner (Oct 1996), “The 

Internet Standards Process -- 
Revision 3”, RFC 2026 

 
[6] R. Braden (Oct 1989), 

“Requirements for Internet Hosts -- 
Communication Layers”, RFC 1122 

 
[7] Godred Fairhurst, 

http://www.erg.abdn.ac.uk/users/gor
ry/eg3561/intro-pages/osi.html, 
Lecture Notes, Retrieved Dec 2001 

 
[8] W. R. Stevens, “TCP/IP Illustrated, 

Volume 1 – The Protocols”, 
Addison Wesley, Oct 2000 

 
[9] Allan Bruce (Aug 2001), “Notes on 

Setup of Hosts and Dummynet 
Machine for Simulation of Satellite 
Transfers and World-Wide-Web 
Experiments”, Electronics Research 
Group – University of Aberdeen 

 
 
 

 
 
 
 
[10] M. Rey (Sep 1981), 

“Transmission Control Protocol,  
 DARPA Internet Program, Protocol 

Specification”, RFC 793 
 
[11] M. Player (Feb 2000), EG3563 

Lecture Notes, University of 
Aberdeen 

 
[12] Cadence Design Systems, 

http://www.cadence.com/datasheets
/baseline.html, Retrieved Dec 2001 

 
[13] D. W. Loveland (Nov 2000), 

“Automated deduction: 
achievements and future 
directions”, Communications of 
the ACM, 43 (11es): 257-263 

 
[14] L. Lamport (Nov 2001), 

“Specifying Systems – 
Preliminary Draft”, Copyright 
Leslie Lamport 

 
[15] G. J. Holzmann, “Design and 

Validation of Computer 
Protocols”, Prentice-Hall, 1991 

 
[16] 


		2002-08-06T21:35:04+0000
	Allan M Bruce




